Simulation of Ultrashort Pulse Shaping Filter Based on Multilayer Volume Holographic Gratings

Article Preview

Abstract:

Shaping and filtering of ultrashort pulsed beam at 1.06um by using multilayer volume holographic gratings (MVHGs) is analyzed. The modified multilayer coupled wave theory used to analyze the Bragg diffraction of a system of MVHG is derived. The spectral intensity distributions of the diffracted beam are calculated. The diffraction bandwidth, diffraction pulse duration and the total diffraction efficiency of the filter are also analyzed. Control of the optical pulse shape is accomplished by adjusting the width of the intermediate layer of an optical filter of MVHGs. This pulse shaping technique will be useful in the optical communication and optical computing systems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6953-6958

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. K. Gaylord and M. G. Moharam, Analysis and applications of optical diffraction by gratings, Proc. IEEE, 73(1985) 894-924.

DOI: 10.1109/proc.1985.13220

Google Scholar

[2] L. Solymar and D. J. Cooke, Volume holography and volume gratings (Academic, New York, 1981).

Google Scholar

[3] K. Spariosu, I. Tengara and T. Jannson, Stratified volume diffractive elements: modeling and applications, Proc. SPIE vol. 3133 (1997) 101-109.

DOI: 10.1117/12.290184

Google Scholar

[4] D. V. Raymond and H. Lambertus, Dynamic multiple wavelength filter using a stratified volume holographic optical element, US Patent, US5, 640, 256 (Jun. 17, 1997).

Google Scholar

[5] Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner and G. A. Brost, Bandwidth study of volume holography in photorefractive InP: Fe for femtosecond pulse readout at 1. 5 μm, J. Opt. Soc. Am. B, 15(11) (1998) 2763-2768.

DOI: 10.1364/josab.15.002763

Google Scholar

[6] C. H. Wang, L. R. Liu, A. M. Yan, D. A. Liu, D. S. Li and W. J. Qu, Pulse shaping properties of volume holographic gratings in anisotropic media, J. Opt. Soc. A. 23(12) (2006)3191-3196.

DOI: 10.1364/josaa.23.003191

Google Scholar

[7] A. M. Yan, L. R. Liu, D. A. Liu, Y. Zhou, Z. Luan and C. H. Wang, Analysis of an ultrashort pulsed finite beam diffracted by volume gratings,J. Optics A: Pure Appl. Opt. 9(2007) 66-72.

DOI: 10.1088/1464-4258/9/1/012

Google Scholar

[8] H. Kogelink, Coupled wave theory for thick hologram gratings, Bell Syst. Tech. J. 48(1969) 2909-2945.

DOI: 10.1002/j.1538-7305.1969.tb01198.x

Google Scholar

[9] A. P. Yakimovich, Multilayer three-dimensional holographic gratings, Opt. Spectrosc. (USSR)49(1980) 85-88.

Google Scholar

[10] V. A. Komotskii and V. F. Nikulin, Theoretical analysis of diffraction of a Gaussian optical beam by a system of two diffraction gratings, Opt. Spectrosc. (USSR) 63(1987) 239-242.

Google Scholar

[11] R. D. Vre and L. Hesselink , Analysis of photorefractive stratified volume holographic optical elements, J. Opt. Soc. Am. B 11(1994)1800-1808.

DOI: 10.1364/josab.11.001800

Google Scholar

[12] A. M. Yan, L. R. Liu, Y. N. Zhi, D. A. Liu and J. F. Sun, Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout, J. Opt. Soc. Am. A 26(2009) 135-141.

DOI: 10.1364/josaa.26.000135

Google Scholar

[13] A. Yan, L. Liu, L. Wang, D. Liu , J. Sun and L. Wan, Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings, Applied Physics B: Lasers and Optics 96(1) (2009) 71-77.

DOI: 10.1007/s00340-009-3462-7

Google Scholar