[1]
J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, New York: McGraw-Hill, second edition. (1994).
Google Scholar
[2]
K. Schugerl, K.H. Bellgardt, Bioreaction Engineering: Modeling and Control, Springer-Verlag, Berlin Heidelberg, 2000. A. Kasperski, T. Miskiewicz., Optimization of pulsed feeding in a Baker's yeast process with dissolved oxygen concentration as a control parameter, Biochem. Eng. J., vol. 40, pp.321-327, (2008).
DOI: 10.1016/j.bej.2008.01.002
Google Scholar
[3]
G.J. Butler, G.S.K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM J. Appl. Math. vol. 45, p.138–151, (1985).
DOI: 10.1137/0145006
Google Scholar
[4]
S.B. Hsu, S. Hubbell, P. Waltman, A mathematical theory of single-nutrient competition in continuous cultures of microorganisms, SIAM J. Appl. Math. vol. 32, p.366–383, (1977).
DOI: 10.1137/0132030
Google Scholar
[5]
G.S.K. Wolkowicz, Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: general response function and differential death rates, SIAM J. Appl. Math. vol. 52, p.222–233, (1992).
DOI: 10.1137/0152012
Google Scholar
[6]
S.R. Hansen, S.P. Hubbell, Single-nutrient microbial competition: Agreement between experimental and theoretical forecast outcomes, , Science, vol. 207, p.1491–1493, (1980).
DOI: 10.1126/science.6767274
Google Scholar
[7]
J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems, J. Theor. Biol. vol. 188, p.121–126, (1997).
DOI: 10.1006/jtbi.1997.0458
Google Scholar
[8]
P., Smith, Feedback control for the chemostat, J. Math. Biol. vol. 46, p.48–70, (2003).
Google Scholar
[9]
C. Ratledge, B. Kristiansen, Basic Biotechnology, Cambridge University Press, Cambridge, (2006).
Google Scholar
[10]
B.T. Li, Competition in a turbidostat for an inhibitory nutrient, J. Biol. Dyn. vol. 2, p.208–220, (2008).
Google Scholar