Removal of Fluoride from Aqueous Solution by Using Ca-Bentonite and H-Bentonite

Article Preview

Abstract:

Removal of fluoride from aqueous solution by using Ca-bentonite and H-bentonite (acid-treated bentonite) was studied by batch equilibrium method. The fluoride sorption capacity of Ca-bentonite increases with the fluoride concentration increase or the pH-value decrease. H-bentonite has better affinity to fluoride than Ca-bentonite. H-bentonite can be used effectively for fluoride removal as a low cost adsorbent. The adsorption type of H-bentonite is ion exchange and the adsorption type of Ca-bentonite can be explained by ion exchange and physical adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

1417-1422

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Agrawal, A.K. Vaish and P. Vaish, Curr. Sci. Vol. 73 (1997), p.743–764.

Google Scholar

[2] WHO, Guildlines for Drinking Water Quality. Geneva, (1993).

Google Scholar

[3] E.J. Reardon and Y. Wang, Environ. Sci. Technol. Vol. 24 (2000), p.3247–3253.

Google Scholar

[4] I.B. Solangi, S. Memon and M.I. Bhanger, J. Hazard. Mater. Vol. 171 (2009), p.815–819.

Google Scholar

[5] N. Viswanathan and S. Meenakshi, J. Hazard. Mater. Vol. 162 (2009), p.920–930.

Google Scholar

[6] S. Meenakshi and N. Viswanathan, J. Colloid Interface Sci. Vol. 308 (2007), p.438–450.

Google Scholar

[7] Z. Amor, B. Bariou, N. Mameri, M. Taky, S. Nicolas and A. Elmidaoui, Desalination Vol. 133 (2001), p.215–223.

DOI: 10.1016/s0011-9164(01)00102-3

Google Scholar

[8] P. Sehn, Desalination Vol. 223 (2008), p.73–84.

Google Scholar

[9] A. Bhatnagar, E. Kumar and M. Sillanpää, Chem. Eng. J. Vol. 171 (2011), p.811–840.

Google Scholar

[10] P. Miretzky and A.F. Cirelli, J. Fluorine Chem. Vol. 132 (2011), p.231–240.

Google Scholar

[11] M. Mohapatra, S. Anand, B.K. Mishra, Dion E. Giles and P. Singh, J. Environ. Manage. Vol. 91 (2009), p.67–77.

Google Scholar

[12] A. Tor, N. Danaoglu, G. Arslan and Y. Cengeloglu, J. Hazard. Mater. Vol. 164 (2009), p.271–278.

Google Scholar

[13] A. Tor, Desalination, Vol. 201 (2006), p.267–276.

Google Scholar

[14] A. Eskandarpour, M.S. Onyango, A. Ochieng and S. Asai, J. Hazard. Mater. Vol. 152 (2008), p.571–579.

Google Scholar

[15] B. Kemer, D. Ozdes, A. Gundogdu, V.N. Bulut, C. Duran and M. Soylak, J. Hazard. Mater. Vol. 168 (2009), p.888–894.

DOI: 10.1016/j.jhazmat.2009.02.109

Google Scholar

[16] A. Ramdani, S. Taleb, A. Benghalem and N. Ghaffour, Desalination, Vol. 250 (2010), p.408–413.

DOI: 10.1016/j.desal.2009.09.066

Google Scholar

[17] G. Christidis, Aplied Clay Science, Vol. 13 (1998), p.79–98.

Google Scholar

[18] M. Mahramanlioglu, I. Kizilcikli and I.O. Bicer, J. Fluorine Chem. Vol. 115 (2002), p.41–47.

Google Scholar

[19] B. Bar–Yosef, I. Afik, R. Rosenberg, Soil Sci. Vol. 145 (1988), p.194.

Google Scholar

[20] P.M.H. Kau, D.W. Smith and P. Binning, Geoderma, Vol. 84 (1998), p.89–108.

Google Scholar

[21] T.Z. Zhang, Y.C. Shi, H.L. Wang and B.H. Xu, Ecology of nonmetallic deposits in Shandong, Shandong Sci. Technol. Jinan, 1998, 145–165 [in Chinese].

Google Scholar

[22] C.A. Bower and J.T. Hatcher, Soil Sci. Vol. 103 (1967), p.151.

Google Scholar

[23] R. Qadeer, J. Hanif, M. Khan, M. Salem, Radiochim. Acta. Vol. 68 (1995), p.197–201.

Google Scholar

[24] P.M.H. Kau, D.W. Smith and PJ Binning, J. Contam. Hydrol. Vol. 28 (1997), p.267–288.

Google Scholar

[25] G. Lagaly and S. Ziesmer, Adv. Colloid interface sci. Vol. 100–110 (2003), p.105–128.

Google Scholar