Strontium Modification of Biomaterial: The Effective Approach to Enhance the Bioactivity and Biocompatibility of Calcium Silicate

Article Preview

Abstract:

Calcium silicate (CS), the recent developed biodegradable ceramic, shows potential in stimulating bone regeneration. However, the rapid degradation restricts its further application, that is, the cytotoxicity is highly suspicious. In this study, the attempt with the addition of strontium by partially replacing the site of calcium shows appropriate, not only enhancing the bioactivity of CS, but also promoting its biocompatibility. Thus, the modification of biomaterial by strontium seems to be an effective approach for biological application.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

195-199

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.C. Xue, A. Bandyopadhyay, S. Bose. Mesoporous calcium silicate for controlled release of bovine serum albumin protein. Acta Biomater Vol 5 (2009), p.1686–1696.

DOI: 10.1016/j.actbio.2009.01.012

Google Scholar

[2] S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu. Recon- struction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials Vol 29 (2008), p.2588–2596.

DOI: 10.1016/j.biomaterials.2008.03.013

Google Scholar

[3] J. Buehler, P. Chappuis, J.L. Saffar, Y. Tsouderos, A. Vignery. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone, Vol 29 (2001), p.176–179.

DOI: 10.1016/s8756-3282(01)00484-7

Google Scholar

[4] Z.Y. Li, W.W. Lu, P.K.Y. Chiu, W.M. Lam, B. Xu, K. M. C. Cheung, J. C. Y. Leong, K. D. K. Luk. Strontium-calcium coadminis- tration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. J. Orthop. Res. Vol 27 (2010).

DOI: 10.1002/jor.20818

Google Scholar

[5] S. Peng, G. Zhou, K. D. K. Luk, K. M. C. Cheung, Z. Y. Li, W. M. Lam, Z. Zhou, W. W. Lu. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell. Physiol. Biochem. Vol 23(2009).

DOI: 10.1159/000204105

Google Scholar

[6] J. Y. Reginster. Strontium ranelate in the therapeutic strategies for osteoporosis, including GIO. Bone Vol 45(2009), p. S131.

DOI: 10.1016/j.bone.2009.07.042

Google Scholar

[7] N. A. T. Hamdy. Strontium ranelate improves bone micro architecture in osteoporosis. Rheumatology Vol 48 (2009), p. Iv9–Iv13.

DOI: 10.1093/rheumatology/kep274

Google Scholar

[8] B. Habermann, K. Kafchitsas, G. Olender, P. Augat, A. Kurth. Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif. Tissue Int. Vol 86 (2010), p.82–89.

DOI: 10.1007/s00223-009-9317-8

Google Scholar

[9] C.T. Wu, Y. Ramaswamy, D. Kwik, H. Zreiqat. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials Vol 28 (2007), p.3171–3181.

DOI: 10.1016/j.biomaterials.2007.04.002

Google Scholar

[10] L. L. Hench, J.M. Polak. Third-generation biomedical materials. Science 2002, Vol 295 (2002), p.1014–1017.

DOI: 10.1126/science.1067404

Google Scholar

[11] W. Zhang, Y. Shen , H. Pan, K. Lin, X. Liu, B.W. Darvell, W.W. Lu, J. Chang, L. Deng, D. Wang, W. Huang. Effects of strontium in modified biomaterials. Acta Biomater. Vol 7(2011), pp.800-888.

DOI: 10.1016/j.actbio.2010.08.031

Google Scholar