Properties of LiNi0.5Mn1.5O4 /Li Cell in Ionic Liquid Electrolyte Based on N-methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide

Article Preview

Abstract:

LiNi0.5Mn1.5O4 material was synthesized by PVP-assisted gel-combustion method and examined as a cathode material for lithium-ion batteries, working together with a room temperature ionic liquid electrolyte and a lithium metal anode. The LiTFSI-Pp13TFSI ionic liquid electrolyte was obtained by dissolution of solid lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) in liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) amide (Pp13TFSI). The LiNi0.5- Mn1.5O4/LiTFSI-Pp13TFSI/Li cell was tested by galvanostatic charging/discharging and compared with standard carbonate/LiPF6 electrolyte. At low current (0.05 C) density, the LiNi0.5Mn1.5O4/ LiTFSI-Pp13TFSI/Li cell exhibited stable cycling for 11 cycles, but it degraded rapidly in subsequent cycles. Preliminary tests showed that both the cathode and anode interfacial reaction contributed to the rapid degradation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

978-981

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Aurbach, V. Borgel, E. Markevich, G. Semrau and M. Schmidt: J Power Sources Vol. 189 (2009), p.331.

DOI: 10.1016/j.jpowsour.2008.08.099

Google Scholar

[2] G. Q. Liu, L. Wen and Y. M. Liu: J Solid State Electr Vol. 14 (2010), p.2191.

Google Scholar

[3] R. J. Chen, H. Q. Zhang and F. Wu: Prog Chem Vol. 23 (2011), p.366.

Google Scholar

[4] N. S. Choi, Y. Lee, S. S. Kim, S. C. Shin and Y. M. Kang: J Power Sources Vol. 195 (2010), p.2368.

Google Scholar

[5] A. Lewandowski, A. Swiderska-Mocek and I. Acznik: Electrochim Acta Vol. 55 (2010), p. (1990).

Google Scholar

[6] A. P. Lewandowski, A. F. Hollenkamp, S. W. Donne and A. S. Best: J Power Sources Vol. 195 (2010), p. (2029).

Google Scholar

[7] D. Aurbach, E. Markevich and V. Baranchugov: Electrochem Commun Vol. 8 (2006), p.1331.

Google Scholar

[8] J. Mun, T. Yim, K. Park, J. H. Ryu, Y. G. Kim and S. M. Oh: J Electrochem Soc Vol. 158 (2011), p. A453.

Google Scholar

[9] A. Martinelli, A. Matic, P. Johansson, P. Jacobsson, L. Borjesson, A. Fernicola, S. Panero, B. Scrosati and H. Ohno: J Raman Spectrosc Vol. 42 (2011), p.522.

DOI: 10.1002/jrs.2713

Google Scholar

[10] S. P. Ong, O. Andreussi, Y. B. Wu, N. Marzari and G. Ceder: Chem Mater Vol. 23 (2011), p.2979.

Google Scholar

[11] P. C. Howlett, E. I. Izgorodina, M. Forsyth and D. R. MacFarlane: Z Phys Chem Vol. 220 (2006), p.1483.

Google Scholar