Li(Ni1/3Co1/3Mn1/3)O2 with High Rate Capability Synthesized via a Novel Gel-Combustion Method

Article Preview

Abstract:

Li(Ni1/3Co1/3Mn1/3)O2 material with high rate capability was synthesized by a novel gel-combustion method using polyvinylpyrrolidone as a polymer chelating agent and a fuel. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to study the structure, morphology and element distribution of the Li(Ni1/3Co1/3Mn1/3)O2 material. XRD analysis showed that all samples were α-NaFeO2 structure and Li(Ni1/3Co1/3Mn1/3)O2 prepared at 900 °C had the highest c/a of 4.977 indicating the highest layered-ness. EDS scan demonstrated that the precursor was homogeneous. SEM images indicated all samples were well crystallized. Charge and discharge tests showed all samples had good rate capability. Among them, Li(Ni1/3Co1/3Mn1/3)O2 prepared at 900 °C had the highest capacity and the best rate capability. It delivered 162.1 mAh•g−1 at 0.25 C between 2.5 and 4.3 V and the capacity retention was about 81% compared to that of 0.25C rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

973-977

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough: Mater Res Bull Vol. 15 (1980), p.783.

Google Scholar

[2] J. M. Tarascon and M. Armand: Nature Vol. 414 (2001), p.359.

Google Scholar

[3] E. Rossen, C. D. W. Jones and J. R. Dahn: Solid State Ionics Vol. 57 (1992), p.311.

Google Scholar

[4] T. Ohzuku and Y. Makimura: Chem Lett Vol. (2001), p.642.

Google Scholar

[5] M. H. Lee, Y. Kang, S. T. Myung and Y. K. Sun: Electrochim Acta Vol. 50 (2004), p.939.

Google Scholar

[6] K. M. Shaju, G. V. S. Rao and B. V. R. Chowdari: Electrochim Acta Vol. 48 (2002), p.145.

Google Scholar

[7] T. H. Cho, S. M. Park and M. Yoshio: Chem Lett Vol. 33 (2004), p.704.

Google Scholar

[8] S. H. Park, H. S. Shin, S. T. Myung, C. S. Yoon, K. Amine and Y. J. Sun: Chem Mater Vol. 17 (2005), p.6.

Google Scholar

[9] P. He, H. R. Wang, L. Qi and T. Osaka: J Power Sources Vol. 160 (2006), p.627.

Google Scholar

[10] L. Qi, K. H. Dai, Y. T. Xie, Y. J. Wang and Z. S. Song: Electrochim Acta Vol. 53 (2008), p.3257.

Google Scholar

[11] L. Qi, K. H. Dai, Y. J. Wang, H. J. Feng and Y. T. Xie: Acta Phys-Chim Sin Vol. 23 (2007), p. (1927).

Google Scholar

[12] N. Kalaiselvi and P. Periasamy: J Power Sources Vol. 159 (2006), p.1360.

Google Scholar

[13] G. T. K. Fey, C. S. Chang and T. P. Kumar: J Solid State Electr Vol. 14 (2010), p.17.

Google Scholar

[14] D. Aurbach, S. K. Martha, H. Sclar, Z. S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik and B. Markovsky: J Power Sources Vol. 189 (2009), p.248.

DOI: 10.1016/j.jpowsour.2008.09.090

Google Scholar

[15] S. K. Kim, W. T. Jeong, H. K. Lee and J. Shim: Int J Electrochem Sc Vol. 3 (2008), p.1504.

Google Scholar

[16] H. Sclar, D. Kovacheva, E. Zhecheva, R. Stoyanova, R. Lavi, G. Kimmel, J. Grinblat, O. Girshevitz, F. Amalraj, O. Haik, E. Zinigrad, B. Markovsky and D. Aurbach: J Electrochem Soc Vol. 156 (2009), p. A938.

DOI: 10.1149/1.3212850

Google Scholar

[17] M. Y. Song, H. U. Kim, D. R. Mumm and H. R. Park: Electron Mater Lett Vol. 6 (2010), p.91.

Google Scholar

[18] J. K. Ngala, N. A. Chernova, M. M. Ma, M. Mamak, P. Y. Zavalij and M. S. Whittingham: J Mater Chem Vol. 14 (2004), p.214.

Google Scholar