Study on the Electrodeoxidation of Solid Dy2O3 in Molten CaCl2

Article Preview

Abstract:

The electrodeoxidation of Dy2O3 for preparing metal Dy in CaCl2 melt was studied by cyclic voltammetry, constant potential electrolysis techniques and thermodynamics analysis. Two electrodes system was employed during measuring cyclic voltammetry. Only one cathodic current peak(at about -1.75V ) was discovered before the decomposition of CaCl2 which corresponded to the electrodeoxidation of Dy2O3 in the cyclic voltammograms in molten CaCl2 at 850°C. The validity of the cyclic voltammograms was further confirmed by thermodynamics analysis and the CO2、CO anodic gas detected. In constant potential electrolysis products there were no other intermediates except Dy2O3 and Dy observed by XRD. And the results confirmed the following electrodeoxidation sequence: Dy2O3→Dy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

955-959

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.C. Lin: Chinese Rare Earths Vol. 22 (2001), p.75.

Google Scholar

[2] S.R. Zhang: Rare Metal. Cemen. Carb. Vol. 142 (2000), p.53.

Google Scholar

[3] Y. Castrillejo, M.R. Bermejo, A.I. Barrado, R. Pardo, E. Barrado, A.M. Mart´ınez.: Electrochim. Acta. Vol. 50 (2005), p. (2047).

DOI: 10.1016/j.electacta.2004.09.013

Google Scholar

[4] G.Z. Chen, D.J. Fray, T.W. Farthing: Nature Vol. 407 (2000), p.361.

Google Scholar

[5] D.J. Fray , G.Z. Chen: Mater. Sci. Tech. Vol. 20 (2002), p.295.

Google Scholar

[6] X. B Jin, P. Gao, D.H. Wang, X.H. Hu, G.Z. Chen: Angew. Chem. Int. Ed. Vol. 43 (2004), p.733.

Google Scholar

[7] E. Gordo, G.Z. Chen, D.J. Fray: Electrochim. Acta. Vol. 49 (2004), p.2195.

Google Scholar

[8] X.Y. Yan, D.J. Fray: Metall. Mater. Trans. B Vol. 33 (2002), p.685.

Google Scholar

[9] S. Ghosh, S. Vandarkuzhali, P. Venkatesh, G. Seenivasan, T. Subramanian, B.P. Reddy, K. Nagarajan: J. Electroanal. Chem. Vol. 627 (2009), p.15.

Google Scholar

[10] Q.S. Song, Q. Xu, X. Kang, J.H. Du, Z.P. Xi: J. Alloy Comp. Vol. 490 (2010), p.241.

Google Scholar

[11] S.L. Wang, Y. Xue, H. Sun: J. Electroanal. Chem. Vol. 595 (2006), p.109.

Google Scholar

[12] S.L. Wang, Y.J. Li: J. Electroanal. Chem. Vol. 571 (2004), p.37.

Google Scholar

[13] C. Schwandt, D.J. Fray: Electrochim. Acta. Vol. 51 (2005), p.66.

Google Scholar

[14] K. Dring, R. Dashwood, D. Inman: J. Electrochem. Soc. Vol. 152 (2005), p.104.

Google Scholar

[15] G.Z. Chen, E. Gordo, D.J. Fray: Metall. Mater. Trans. B Vol. 35 (2004), p.223.

Google Scholar

[16] G. Xie: Principle and Application of Molten Salts (Metallurgical Industry Press, Beijing 1998).

Google Scholar

[17] Y.J. Liang, Y.C. Che: Handbook of Inorganic Thermodynamic Data (Northeastern University Press, Shenyang 1993).

Google Scholar