Effect of Doping Cation Valencies on Low Temperature Performance of LiFePO4/C

Article Preview

Abstract:

The doped and undoped LiFePO4/C samples are prepared by two-step solid-state reaction. The X Ray Diffraction (XRD) results indicate that metal ions are successfully doped in LiFePO4 without any unexpected phase. The Scanning Electron Microscope (SEM) shows that the particle morphologies of samples are near-spherical with about 200-300nm size which can be observed in all samples. The electrochemical tests indicate that doping oversize ions will increase electrode polarization. The limitation of the Li+ migration is intensified by doping metal ions with high valence. LiFePO4/C samples doped with Mn2+ and Ti4+ behave better at low temperature, especially the one doped with Ti4+. Battery with this Ti4+ doped material can yield 77mAhg-1 when discharge at -20°C and 0.5C, about 26mAhg-1 higher than the undoped one.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

935-939

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier and M. Armand: Journal of Power Sources Vol. 97-8 (2001), p.503.

DOI: 10.1016/s0378-7753(01)00727-3

Google Scholar

[2] Y. Cui, X.L. Zhao and R.S. Guo: Journal of Alloys and Compounds Vol. 490 (2010), p.236.

Google Scholar

[3] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang and H.G. Kim: Solid State Communications Vol. 129 (2004), p.311.

Google Scholar

[4] J. -K. Kim, G. Cheruvally and J. –H. Ahn: J Solid State Electrochem Vol. 12 (2008), p.799.

Google Scholar

[5] H. Huang, S.C. Yin and L.F. Nazar: Electrochem. Solid State Lett. Vol. 4 (2001) p. A170.

Google Scholar

[6] M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya and J. R. Matos: Solid State Ionics Vol. 177 (2006), p.497.

DOI: 10.1016/j.ssi.2005.11.018

Google Scholar

[7] Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu and H. G. Pan: J. Power Sources Vol. 184 (2008), p.444.

Google Scholar

[8] Tsuyoshi Honma, K. Nagamine and Takayuki Komatsu: Ceramics International Vol. 36 (2010), p.1137.

Google Scholar

[9] Marnix Wagemaker, Brian L. Ellis, Dirk Lutzenkirchen-Hecht, Fokko M. Mulder and Linda F. Nazar: Chem. Mater. Vol. 20 (2008), p.6313.

Google Scholar

[10] M. Abbate, S.M. Lala, L.A. Montoro and J.M. Rosolenb: Electrochemical and Solid-State Letters Vol. 8 (2005), p. A288.

Google Scholar

[11] N. Hua, C.Y. Wang, X.Y. Kang, T. Wumair and Y. Han: Journal of Alloys and Compounds Vol. 503 (2010), p.204.

Google Scholar

[12] S.Y. Chung, J. T. Bloking and Y.M. Chiang: Nature Materials Vol. 1 (2002), p.123.

Google Scholar

[13] C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier: Electrochem. Solid-State Lett. Vol. 9 (2006), p. A352.

DOI: 10.1149/1.2201987

Google Scholar

[14] G.X. Wang, X. P. Shen and J. Yao: Journal of Power Sources Vol. 189 (2009), p.543.

Google Scholar

[15] N. Hua, C.Y. Wang, X.Y. Kang, T. Wumair and Y. Han: Journal of Alloys and Compounds Vol. 503 (2010), p.205.

Google Scholar