Particle Morphology and Electrochemical Performance of LiFePO4 Synthesized via Hydrothermal Process at 200°C

Article Preview

Abstract:

LiFePO4 powders were synthesized from LiOH•H2O, FeSO4•7H2O, and H3PO4 via the hydrothermal process at 200C . The particle sizes, morphology and electrochemical performance of the as-synthesized LiFePO4 particles varied from the pH value, reaction time and solution concentration of the precursor. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvaostdtic charge-discharge tests. The results indicated that the samples with carbon coating after reacting at pH value of 9 for 4h exhibited good rate capability, which had small particle size and plate-like morphology.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

926-930

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.J. Brodd, K.R. Bullock, E. Takeuchi, et al: J. Electrochem. Soc. K1 Vol. 151 (2004), p.11.

Google Scholar

[2] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1609.

Google Scholar

[3] M.S. Whittingham: Chem. Rev. Vol. 104, (2004), p.4271.

Google Scholar

[4] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188.

Google Scholar

[5] A. Yamada, S.C. Chung, K. Hinokuma: J. Electrochem. Soc. Vol. 148 (2001), p.224.

Google Scholar

[6] S. Okada, S. Sawa, M. Tabushi, et al: J. Power Sources Vol. 430 (2001), p.97.

Google Scholar

[7] D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahn: J. Power Sources 8 (2002), p.108.

Google Scholar

[8] D. Morgan, A. Van der Ven, G. Ceder: Electrochem. Solid State Lett. Vol. 7 (2004), p.30.

Google Scholar

[9] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P. R Slater: Chem. Mater. Vol. 17 (2005), p.5085.

Google Scholar

[10] M.S. Whittingham: Chem. Rev. Vol. 104 (2004), p.4271.

Google Scholar

[11] A.S. Andersson, J.O. Thomas: J. Power Sources Vol. 97-98 (2001), p.498.

Google Scholar

[12] X. Qin, X. Wang, Y. Zhou, et al: J. Phys. Chem. Vol. C 114 (2010), p.16806.

Google Scholar

[13] H.C. Kang, D.K. Jun, K.W. Kim, et al: J. Power Sources Vol. 179 (2008), p.340.

Google Scholar

[14] S.B. Lee, I.C. Jang, Y.S. Lee, et al: J. Alloys Compd. Vol. 491 (2010), p.668.

Google Scholar

[15] M. Zhong, Z. Zhou: Solid State Ionics Vol. 181 (2010), p.1607.

Google Scholar

[16] J. Ni, H. Zhou, J. Chen, X. Zhang: Materials Letters Vol. 59 (2005), p.2361.

Google Scholar

[17] H. Masashi, K. Keiichi, S. Manabu, et al: J. Power Sources Vol. 119–121 (2003), p.258.

Google Scholar

[18] K. Dokko, S. Koizumi, K. Sharaishi, K. Kanamura: J. Power Sources Vol. 165 (2007), p.656.

DOI: 10.1016/j.jpowsour.2006.10.027

Google Scholar

[19] K. Akira, S. Shinya, M. Masaru: J. Electroceram Vol. 24 (2010), p.69.

Google Scholar

[20] J.J. Chen, S.J. Wang, M.S. Whittingham: J. Power Sources Vol. 174 (2007), p.442.

Google Scholar

[21] Q. Song, X. Ou, Z. Wang, et al: Materials Research Bulletin (2011).

Google Scholar

[22] J.J. Chen, M.S. Whittingham: Electrochem Commun. Vol. 8 (2006), p.855.

Google Scholar

[23] J.J. Chen, M.J. Vacchio, M.S. Whittingham, et al: Solid State Ionics Vol. 178 (2008), p.1676.

Google Scholar

[24] Z. Lu, H. Chen, Rosa Robert, et al: Chem. Mater. Vol. 23 (2011), p.2848.

Google Scholar

[25] K. Dokko, S. Koizumi, K. Kanamura: Chem. Lett. Vol. 35(2006), p.338.

Google Scholar

[26] J. Qian, M. Zhou, Y. Cao, et al: J. Phys. Chem. Vol. C 114 (2010), p.3477.

Google Scholar

[27] Y. Wang, E. Hosono, H. Zhou, et al: Angew. Chem. Int. Ed. Vol. 47 (2008), p.7461.

Google Scholar

[28] Huang X, et al : Mater Charact (2010).

Google Scholar