A Two-Step Resolution for Preparing Enantiopure (S)-Ethyl Nipecotate

Article Preview

Abstract:

Enantiopure nipecotic acid or ethyl nipecotate are key precursors for synthesizing a variety of pharmaceutically important compounds. In this work a two-step resolution of racemic ethyl nipecotate was developed to prepare enantiopure (S)-ethyl nipecotate. In the enzymatic resolution step, six lipases were screened for their ability to enantioselectively hydrolyze rac-ethyl nipecotate in t-butanol at 30°C and Novozym 435 was found to be the most effective. Solvent effects on the hydrolysis conversion and enantioselectivity showed that water was the optimum medium. When rac-ethyl nipecotate concentration was kept at 0.5M, the hydrolysis under optimum conditions (lipase loading 5mg/mL, phosphate buffer pH 7.0, reaction temperature 30°C, reaction time 6h) afforded 68.9% ees and 69.5% eep at 49.8% conversion. Novozym 435 preferentially hydrolyzed (R)-ethyl nipecotate over (S)-enantiomer. A parallel reaction model was suggested and found to fit the experimental initial rate data very well. (S)-enriched ethyl nipecotate was further resolved using (D)-tartaric acid and enantiopure (S)-ethyl nipecotate (98.5% ee) was acquired in 84.3% yield. The overall yield of enantiopure (S)-ethyl nipecotate by this two-step resolution was up to 36.0%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

559-566

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.G.M. Dhar, L.A. Borden, S. Tyagarajan, K.E. Smith, T.A. Branchek, R.L. Weinshank and C. Gluchowski: J. Med. Chem. Vol. 37 (1994), p.2334.

Google Scholar

[2] K.E. Andersen, C. Braestrup, F.C. Grønwald, A.S. Jørgensen, E.B. Nielsen, U. Sonnewald, P.O. Sørensen, P.D. Suzdak and L.J.S. Knutsen: J. Med. Chem. Vol. 36 (1993), p.1716.

Google Scholar

[3] K.E. Andersen, J.L. Sørensen, J. Lau, B.F. Lundt, H. Petersen, P.O. Huusfeldt, P.D. Suzdak and M.D.B. Swedberg: J. Med. Chem. Vol. 44 (2001), p.2152.

DOI: 10.1021/jm990513k

Google Scholar

[4] K.E. Andersen, J. Lau, B.F. Lundt, H. Petersen, P.O. Huusfeldt, P.D. Suzdak and M.D.B. Swedberg: Bioorg. Med. Chem. Vol. 9 (2001), p.2773.

Google Scholar

[5] J.G. Zhang, P. Zhang, X.B. Liu, K. Fang and G.Q. Lin: Bioorg. Med. Chem. Lett. Vol. 17 (2007), p.3769.

Google Scholar

[6] P. Magnus and L.S. Thurston: J. Org. Chem. Vol. 56 (1991), p.1166.

Google Scholar

[7] B.E. Maryanoff: Acc. Chem. Res. Vol. 39 (2006), p.831.

Google Scholar

[8] T. Yamanaka, M. Ohkubo, F. Takahashi and M. Kato: Tetra. Lett. Vol. 45 (2004), p.2843.

Google Scholar

[9] X.Z. Zheng, C. Day and R. Gollamudi: Chirality, Vol. 7 (1995), p.90.

Google Scholar

[10] Y.J. Chung, L.A. Christianson, H.E. Stanger, D.R. Powell and S.H. Gellman: J. Am. Chem. Soc. Vol. 120 (1998), p.10555.

Google Scholar

[11] E.D. Moher, A.E. Tripp, L.C. Creemer and J.T. Vicenzi: Org. Process Res. Dev. Vol. 8 (2004), p.593.

Google Scholar

[12] S.C. Bergmeier and K.A. Ismail: Eur. J. Med. Chem. Vol. 37 (2002), p.469.

Google Scholar

[13] J. Rivera, N. Jayasuriya, D. Rane, K. Keertikar, J.A. Ferreira, J.P. Chao, K. Minor and T. Guzi: Tetradron Lett. Vol. 43 (2002), p.8917.

DOI: 10.1016/s0040-4039(02)02157-3

Google Scholar

[14] R. Staniszewska, J. Fichna, K. Gach, G. Toth, J. Poels, J.V. Broeck and A. Janecka: Chem. Biol. Drug Des. Vol. 72 (2008), p.91.

DOI: 10.1111/j.1747-0285.2008.00678.x

Google Scholar

[15] A.M. Akkerman, D.K.D. Jongh and H. Veldstra: Recueil Vol. 70 (1951), p.899.

Google Scholar

[16] P.A. Gugger, D.C.R. Hockless, N.L. Kilah, R.C. Mayadunne and S.B. Wild: Tetrahedron: Asymmetry Vol. 19 (2008), p.1810.

DOI: 10.1016/j.tetasy.2008.07.018

Google Scholar

[17] A.W. Lei, M. Chen, M.S. He and X.M. Zhang, Eur. J. Org. Chem. Vol. 19 (2006), p.4343.

Google Scholar

[18] A. Liljeblad, H.M. Kavenius, P. Tahtinen and L.T. Kanerva: Tetrahedron: Asymmetry Vol. 18 (2007), p.181.

Google Scholar

[19] M. Masayoshi and S. Makoto, J.P. Patent 2, 007, 117, 034. (2007).

Google Scholar

[20] K. Mori, M. Nojiri, A. Nishiyama and N. Taoka, U.S. Patent 20, 100, 105, 917. (2010).

Google Scholar

[21] A.M. Rustum: J. Chromatogr. A Vol. 696 (1995), p.75.

Google Scholar

[22] C.S. Chen, Y. Fujimoto, G. Girdaukas and C.J. Sih: J. Am. Chem. Soc. Vol. 104 (1982), p.7294.

Google Scholar