Amphetamine-Induced Locomotion and Brain Stimulation Reward Research and Applications

Article Preview

Abstract:

Amphetamine, a dopamine agonist, has an effect on increasing dopamine level in certain brain regions, like the nucleus accumben and the ventral tegmental area (Yoshida et al., 1992). Hence, it increases reward-related functions. In the current study, we examined the changes in the frequency of locomotion in previously habituated mice after 3mg/kg amphetamine injections. In the same way, we also monitored the changes in bar pressing rates of previously trained rates after 2mg/kg amphetamine injections. Though not showing a significant statistical result, both graphs and discussions supported that amphetamine injection increased horizontal quadrants crossings compared with saline injection. While the amphetamine administration increased bar press rate in previously trained rats at low frequencies, it led the rats to fewer bar presses at higher frequencies compared with both the baseline and the saline condition. The results of both experiments consistent with past studies which claim that amphetamine acts as a dopaminergic agonist and increases reinforcing capacity through enhancement of dopaminergic transmission (Gallistel & Karras, 1984).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

572-579

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yoshida, M., Yokoo, H. , Mizoguchi, K. , Kawahara, H., Tsuda, A., Nishikawa, T., Tanaka, M. (1992).

Google Scholar

[2] Gallistel, C. R., & Karras, D. (1984). Pimozide and amphetamine have opposite effects on the reward summation function. Pharmacology, Biochemistry and Behavior, 20, 73-77.

DOI: 10.1016/0091-3057(84)90104-7

Google Scholar

[3] Olds, J. (1975). Reward and drive neurons. Brain-stimulation reward, 1-25.

Google Scholar

[4] Rolls, E. T. (1975). The brain and reward. Great Britain: A. Wheaton Co.

Google Scholar

[5] Yeomans, J. (2010a) Rewarding brain stimulation. Encyclopedia of Behavioral Neuroscience, 3, 154-160.

DOI: 10.1016/b978-0-08-045396-5.00163-9

Google Scholar

[6] Wise, R. A. (1996). Addictive drugs and brain stimulationreward. AnnualReviews, 19, 319-340.

Google Scholar

[7] Yeomans, J. S., & Baptista, M. (1997) . Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacology, Biochemistry and Behavior, 57, 915-921.

DOI: 10.1016/s0091-3057(96)00467-4

Google Scholar

[8] Steidl, S., & Yeomans, J. S. (2008).

Google Scholar

[9] Yeomans, J. S. (2010b). Psy 399 brain stimulaiton reward handout. Unpublished manuscript, Department of Psychology, University of Toronto, Toronto, Canada. Retrieved from https: /portal. utoronto. ca.

Google Scholar

[10] Cameron, D. L., Wessendorf, M. W., & Williams, J. T. (1997). A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. Neuroscience, 77(1), 155-166.

DOI: 10.1016/s0306-4522(96)00444-7

Google Scholar

[11] Stohr, T., Wermeling, D.R., Weiner, I., & Feldon, J. (1998). Rat strain differences in open-field behavior and the locomotor stimulating and rewarding effects of amphetamine. Pharmacology Biochemistry and Behavior, 59(4), 813–818.

DOI: 10.1016/s0091-3057(97)00542-x

Google Scholar

[12] Mazurski, E. J., & Beninger, R. J. (1988). Stimulant effects of apomorphine and (+)-amphetamine in rats with varied habituation to test environment. Pharmacology Biochemisto & Behavior, 29, 249-255.

DOI: 10.1016/0091-3057(88)90153-0

Google Scholar

[13] Lodge, D. J., & Grace, A. A. (2008). Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci., 28(31), 7876-7882.

DOI: 10.1523/jneurosci.1582-08.2008

Google Scholar

[14] Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annu. Rev. Psychol., 54, 25- 53.

Google Scholar

[15] Fujiwara, Y., Kazahaya, Y., Nakashima, M., Sato, M., & Otsuki, S. (1987). Behavioral sensitization to methamphetamine in the rat: an ontogenic study. Psychopharmacology, 91, 316-319.

DOI: 10.1007/bf00518183

Google Scholar

[16] Nestler, E. J., & Carlezon, W. A. (2006). The mesolimbic dopamine reward circuit in depression. Biological psychiatry , 59(12), 1151-1159.

DOI: 10.1016/j.biopsych.2005.09.018

Google Scholar

[17] Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373-390.

DOI: 10.1007/pl00005483

Google Scholar