Elaboration of an Electroporation Protocol for Lactobacillus brevis

Article Preview

Abstract:

A detailed electroporation protocol had been established for Lactobacillus brevis TCCC13007. To optimize the conditions for electroporation of L. brevis TCCC13007, an E. coli-Lactobacillus shuttle vector, pMG36e-1 was used. Several experiments that involved manipulation of cell wall weakening agent, electric field strength, electroporation buffer, concentration of transforming plasmid were carried out. Treatment of the recipient L. brevis TCCC13007 with 2% glycine in the growth medium for 3 h improved transformation efficiency. Other electroporation parameters were an electric field strength of 10 kv/cm and plasmid concentration of 0.9 μg. The presence of sorbitol in the electroporation buffer improved the transformation efficiency. Under the optimal conditions, the transformation efficiency was up to 5.1×104 transformants per μg of pMG36e-1. The L. brevis TCCC13007 was also transformed by other plasmids such as pMG36e, pMG36e-2, pGK12, pLP825, pLP82H, respectively. The ability to electroporate plasmid DNA provided a tool for Lactobacillus’s molecular bioengineering to improve their industrial performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

729-732

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nava GM, Bielke LR, Callaway TR and Castaneda M: Anim Health Res Rev Vol. 6(2005), pp.105-118.

Google Scholar

[2] Morelli L, Cocconcelli PS, Bottazzi V, Damiani G, Ferretti L and Sgaramella V: Plasmid Vol. 17(1987) , pp.73-75.

DOI: 10.1016/0147-619x(87)90013-8

Google Scholar

[3] Chassy BM, Flickinger JL: FEMS Microbiol Lett Vol. 44(1987), pp.173-177.

Google Scholar

[4] Aukrust T, Blom H: Food Res Int Vol. 25(1992), pp.253-261.

Google Scholar

[5] Fromm M, Taylor LP, Walbot V: Proc Natl Acad Sci, USA Vol. 82(1985), pp.5824-5828.

Google Scholar

[6] Thompson K, Collins MA: J Microbiol Methods Vol. 26(1996), pp.73-79.

Google Scholar

[7] Vehmaanpera J: FEMS Microbiol Lett Vol. 61(1989), pp.165-169.

Google Scholar

[8] Berthier F, Zagorec M, Champomier-Verges M, Ehrlich SD and Morel-Deville F: Microbiol Vol. 142(1996), pp.1273-1279.

DOI: 10.1099/13500872-142-5-1273

Google Scholar

[9] Sieo CC, Abdullah N, Tan WS and Ho YW: Biotechnol Vol. 5(2006), pp.244-251.

Google Scholar

[10] Wei MQ, Rush CM, Norman JM, Hafner LM, Epping RJ and Timms P: J Microbiol Methods Vol. 21(1995), pp.97-109.

Google Scholar

[11] Birnboim HC, Doly J: Nucleic Acids Res Vol. 7(1979), pp.1513-1523.

Google Scholar

[12] Van de Guchte M, van der Vossen JMBM, Kok J and Venema G: Appl Environ Microbiol Vol. 55(1989), pp.224-228.

DOI: 10.1128/aem.55.1.224-228.1989

Google Scholar

[13] Posno M, Leer RJ, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC and Pouwels PH: Appl Environ Microbiol Vol. 57(1991), pp.1822-1828.

DOI: 10.1128/aem.57.6.1822-1828.1991

Google Scholar

[14] Fernandes CF, Shahani KM and Amer MA: FEMS Microbiol Lett Vol. 46(1987), pp.343-356.

Google Scholar

[15] Kok J, van der Vossen JMBM and Venema G: Appl Environ Microbiol Vol. 48(1984), pp.726-731.

Google Scholar

[16] Serror P, Sasaki T, Ehrlich SD and Maguin E: Appl Environ Microbiol Vol. 68(2002), pp.46-52.

Google Scholar