[1]
Issa R I. Solution of the implicity discretized fluid flow equations by operator-splinting. Journal of Computational Physics, 1985, 62: 40-65.
Google Scholar
[2]
Galpin P F, Van Doormaal J P. Raithby G D. Solution of the incompressible mass and momentumequations by application of a coupled equation line solver. Intermational Journal for Numerical Methods in Fluids, 1985, 5: 615-625.
DOI: 10.1002/fld.1650050703
Google Scholar
[3]
Kim S W, Benson T J. Comparison of the SMAC, PISO and iterative time-advancing schemes for unsteady flows. Comput Fluids, 1992, 21: 435-454.
DOI: 10.1016/0045-7930(92)90048-z
Google Scholar
[4]
McGuirk J J, Palma J M L M. The efficiency of alternative pressure-correction formulations for incompressible turbulent flow problems. Comput Fluids, 1993, 22(1): 77-87.
DOI: 10.1016/0045-7930(93)90006-u
Google Scholar
[5]
Zedan M, Schneider G E. A coupled strongly implicit procedure for velocity and pressure computation in fluid flow problems. Numerical Heat Transfer, 1985, 8: 537-557.
DOI: 10.1080/01495728508961871
Google Scholar
[6]
Phillips R E, Schimidt F W. Multigrid techniques for the numerical solution of the diffusion equation, Numerical Heat Transfer, 1984, 7: 251-268.
DOI: 10.1080/01495728408961824
Google Scholar
[7]
Hinrichs H, Hinsch K D, Kickstei J, Bohmer M. Deep field noise in holographic image velocimetry: numericaland experimental particle image field modeling. Experiments in Fluids, 1998, 24: 333-339.
DOI: 10.1007/s003480050180
Google Scholar
[8]
Adrian R J. Particle Imaging Techniques for Experimental Fluid Mechanics, Annu Rew Fluid Mech. 1991, 23: 261-270.
DOI: 10.1146/annurev.fl.23.010191.001401
Google Scholar