Microwave-Assisted Synthesis of Corn Starch-Graft-Poly(AM-DADMAC)

Article Preview

Abstract:

Under conditions of microwave radiation (MW) and open-vessel reflux, acrylamide (AM) and diallyldimethylammonium chloride (DADMAC) were grafted to corn starch (St) by aqueous solution polymerization in air atmosphere. Continuous MW in conjunction with potassium persulfate (KPS) were utilized to initiate the above graft reaction. A representative copolymer of St-graft-poly(AM-DADMAC) was characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and energy disperse spectroscopy. Microwave power, radiation time, KPS concentration and AM/DADMAC molar ratio were investigated to examine their effects on grafting efficiency (GE) and cationic degree (CD). The optimal conditions under investigation were microwave power 500 W, radiation time 150 s, KPS concentration 2 mmol·L–1, AM/DADMAC molar ratio 9∶1. The GE and CD obtained were 68.6% and 0.16 mmol·g–1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1342-1347

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Leonelli and T.J. Mason: Chem. Eng. Process. Vol. 49 (2010), p.888.

Google Scholar

[2] A. Sosnik, G. Gotelli and G.A. Abraham: Prog. Polym. Sci. Vol. 36 (2011), p.1050–1051.

Google Scholar

[3] C. Ebner, T. Bodner, F. Stelzer and F. Wiesbrock: Macromol. Rapid Commun. Vol. 32 (2011), p.282.

DOI: 10.1002/marc.201190003

Google Scholar

[4] N. Leadbeater: Chemistry World. Vol. 1 (2004), p.38–41.

Google Scholar

[5] D. Adam: Nature. Vol. 421 (2003), p.571–572.

Google Scholar

[6] A. Gourdenne, A.H. Maassarant and P. Monchaux: Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.). Vol. 20 (1979), p.471.

Google Scholar

[7] S. Mishra and G. Sen: Int. J. Biol. Macromol. Vol. 48 (2011), p.688–694.

Google Scholar

[8] A.V. Singh, L.K. Nath and M. Guha: Carbohyd. Polym. Vol. 86 (2011), p.872–876.

Google Scholar

[9] S. Mishra, A. Mukul, G. Sen and U. Jha: Int. J. Biol. Macromol. Vol 48 (2011), p.106–111.

Google Scholar

[10] G. Sen and S. Pal: Int. J. Biol. Macromol. Vol. 45 (2009), p.48–55.

Google Scholar

[11] G. Sen, S. Mishra, U. Jha and S. Pal: Int. J. Biol. Macromol. Vol. 47 (2010), p.164–170.

Google Scholar

[12] V. Singh, A. Tiwari, D.N. Tripathi and R. Sanghi: Carbohyd. Polym. Vol. 58 (2004), p.4.

Google Scholar

[13] S. Pal, T. Nasim, A. Patra, S. Ghosh and A.B. Panda: Int. J. Biol. Macromol. Vol. 47 (2010), p.623–631.

Google Scholar

[14] C.Y. Kan, D. Luo and X.Z. Kong: Polym. Emul. Commun. Vol. 2 (1994), p.16–21 (In Chinese).

Google Scholar

[15] M. Eutamene, A. Benbakhti, M. Khodja and A. Jada: Starch-Stärke. Vol. 61 (2009), p.83.

DOI: 10.1002/star.200800231

Google Scholar

[16] S. Pal, T. Nasim, A. Patra, S. Ghosh and A.B. Panda: Int. J. Biol. Macromol. Vol. 47 (2010), p.625.

Google Scholar

[17] T. Tripathy and R.P. Singh: J. Appl. Polym. Sci. Vol. 81 (2001), p.3297.

Google Scholar

[18] C.M. Du and P. Feng: Technol. Superv. Petrol. Ind. Vol. 16 (2000), p.27–30 (In Chinese).

Google Scholar

[19] B.S. Kaith, R. Jindal, A.K. Jana and M. Maiti: Carbohyd. Polym. Vol. 78 (2009), p.989.

Google Scholar

[20] V. Singh, A. Tiwari, S. Pandey and S.K. Singh: Starch-Stärke. Vol. 58 (2006), p.538.

Google Scholar

[21] Ch. Wandrey and W. Jaeger: Acta. polym. Vol. 36 (1985), p.100.

Google Scholar