Preparation and Mechanical Properties of Zirconia-Mullite Nano-Comoposites from TiO2-Doped Si-Al-Zr-O Amorphous Bulk

Article Preview

Abstract:

Zirconia-mullite nanocomoposites were prepared from TiO2-doped Si-Al-Zr-O amorphous bulks according to a two-step heating treatment between 880 and 1250°C. Effects of TiO2 amount and heat treatment conditions on the mechanical properties have been investigated. The fracture toughness was much more affected by the heat treatment processing than by amount of TiO2. With increasing amount of TiO2 (2.5~10 wt %), the fracture toughness gradually decreases. Nucleating temperature and time and crystallization temperature and time are interrelated. The fracture toughness of the sample with 5 wt% TiO2 nucleated at 920°Cfor 2.0 h and crystallized 1150°Cfor 4.0 h is 7.48 MPa•m1/2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1604-1609

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.A Khor, Y Li. Materials Letters; Vol. 48 (2001), p.57– 63

Google Scholar

[2] C. Duran, Y. K. Tür. Materials Letters, Vol. 59 (2005), p.245– 249

Google Scholar

[3] Schneider H, Schreuer J, Hildmann B. J Eur Ceram Soc., Vol. 28 (2008), p.329–44.

Google Scholar

[4] R. Torrecillas, G. Fantozzi, S. de Aza and J.S. Moya, Acta Materialia Vol. 45 (1997), pp.897-906

DOI: 10.1016/s1359-6454(96)00226-1

Google Scholar

[5] K A Khor, L G Yu, Y Li, et al. Mater Sci Eng, Vol. A339 (2003), pp.286-296

Google Scholar

[6] L B Garrido, E F Aglietti, L Martorello, A L Cavalieri. Mater Sci Eng A, Vol. 419 (2006), p.290−296.

Google Scholar

[7] G. D. Semchenko, I. N. Opryshko, Ya N. Goncharenko, N. S. Chopenko and L. A. Angolenko, Glass and Ceramics, Vol. 56 (1999), pp.393-396

DOI: 10.1007/bf02681350

Google Scholar

[8] S Maitra, N Rahamaa, A.R Sarka and A Tarafdar. Ceramics International, Vol.32 (2006), p.: 201−206.

Google Scholar

[9] K Das, B Mukherjee and G Banerjee. J Euro Ceram Soc., Vol.18 (1998), p.1771–1777.

Google Scholar

[10] L.B. Garrido and E.F. Aglietti, Mater Sci Eng A, Vol.369. (2004), p.250–257

Google Scholar

[11] J M Rincon, J S Mova and M E Melo. Trans. Br. Ceram. Soc., Vol.85 (1986), pp.201-206

Google Scholar

[12] T.S. Zhang, L.B. Kong, Z.H. Du, J. Ma, S. Li, Journal of Alloys and Compounds, Vol.506, (2010), pp.777-783.

Google Scholar

[13] S Maitra, S Pal, S Nath, et al, Ceramics International, Vol.28 (2002), pp.819-826

Google Scholar

[14] S Maitra, A. Rahaman, A. Sarkar and A. Tarafdar, Ceramics International, Vol.32(2006), pp.201-206

Google Scholar

[15] Liang Shuquan, Zhong Jie, Zhang Guowei,Tan Xiaoping, Nano- zirconia/mullite composite ceramics prepared by in-situ controlled crystallization from the Si-Al-Zr-O amorphous bulk, invited talk, in the conference of Ceramic materials and component for energy and environmental application, 2008, Shanghai, China.

DOI: 10.1002/9780470640845.ch14

Google Scholar

[16] X.P. Tan, S.Q. Liang, G.W. Zhang, et al, Phase transitions, Vol.84 (2011), pp.157-166

Google Scholar

[17] C.B Ponton and R.D. Rawlings Mater Sci Tech Vol.5(1989), p.865– 872.

Google Scholar