Post-Weld Oxidation Behavior of AA6061 Al Alloy

Article Preview

Abstract:

Welded AA6061 Al alloy using ER5356 (Al-5Mg) filler was oxidized in flowing air gas for 40hrs at 600oC at a total pressure of approximately 1 atm. The morphology and microstructure of welded joint after exposure was characterized by using optical metallurgy microscopy and Scanning Electron Microscope (SEM). Different oxide morphologies and textures were observed on parent and fusion metal due to the differences of the alloying element. The oxidation mechanism represented a complex reaction occur where the morphology and phase formation of the oxide shows the protective oxide scales showed the protective oxide were developed on parent metal side, meanwhile non-protective oxide scale formed on fusion metal of the welded Al alloy. It can be concluded that the welded area failed to resist oxidation behavior compared to the parent metal. The differ results are discuss in term of microstructure changes caused by high temperature oxidation exposure and alloying element.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

2087-2090

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Maggiolino, C. Scmid. Corrosion resistance in FSW and in MIG welding techniques of 6XXX. Journal of Mater. Process., Vol. 197, 2008, pp.237-240.

DOI: 10.1016/j.jmatprotec.2007.06.034

Google Scholar

[2] U.K. Mudali, B. Raj. Corrosion science and technology. Mechanism, mitigation and monitoring. Alpha Science International Ltd., 2008.

Google Scholar

[3] K. Shimizu, G.M. Brown, K. Kobayashi, P. Skeldon, G.E. Thomson, G.C. Wood. The early stages of high temperature oxidation of an Al-0.5 wt% Mg alloy. Corr. Sc., Vol. 40, 1998, pp.557-575.

DOI: 10.1016/s0010-938x(97)00153-4

Google Scholar

[4] A. Nylund, K. Mizumo, I. Olefjord. Influence of Mg and Si on the oxidation of aluminum. Oxid. Met. Vol. 50, No. ¾, 1998, pp.309-325.

Google Scholar

[5] F. Czerwinski. The oxidation behavior of an AZ91D magnesium alloy at high temperature. Acta Materialia Vol. 50, 2002, pp.2639-2654.

DOI: 10.1016/s1359-6454(02)00094-0

Google Scholar

[6] D. Q. Zhang, J. Li, H.G. Joo, K.Y. Lee. Corrosion properties of Nd:Yag laser GMA hybrid welded AA6061 Al alloy and its microstructure. Corr. Sx. Vol 51,2009, pp.1139-1404.

DOI: 10.1016/j.corsci.2009.03.030

Google Scholar

[7] G.C. Wood, F.H. Stott. Oxidation of alloys. Mater. Sci. and Tech., July 1987, Vol. 3, pp.519-530.

Google Scholar

[8] D.J. Young, B. Gleeson. Alloy phase transformations driven by high temperature corrosion processes. Corr. Sc. Vol. 44, 2002, pp.345-357.

DOI: 10.1016/s0010-938x(01)00065-8

Google Scholar

[9] N.K. Othman, N. Othman, J. Zhang, D.J. Young. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres. Corrosion Sci. Vols. 51, 2009, pp.3039-3049.

DOI: 10.1016/j.corsci.2009.08.032

Google Scholar

[10] N.K. Othman, N. Othman, J. Zhang, D.J. Young. Kesan wap air terhadap pengoksidaan berkitar pada aloi Fe-Cr. Sains Malaysiana 39(2), 2010, pp.249-259).

Google Scholar

[11] N.K. Othman, A. Jalar, N.Othman, D.J. Young. Effects of Lanthanum on Fe-25Cr alloys under cyclic oxidation. Adv. Mater. Research, Vols. 97-101, 2010, pp.1212-1215.

DOI: 10.4028/www.scientific.net/amr.97-101.1212

Google Scholar

[12] J.A.S. Tenorio, D.C.R. Espinosa. High temperature oxidation of Al-Mg Alloys. Oxid Met., Vol. 53. No. ¾. 2000, pp.361-373.

Google Scholar

[13] D.T.L. Van Agterveld, G. Palasantzas, J.Th.M. De Hosson. Magnesium surface segregation and oxidation in Al-Mg alloys studied with local probe scanning Auger-scanning electron microscopy. Applied Surface Science, Vol. 152, 1999, pp.250-258.

DOI: 10.1016/s0169-4332(99)00323-2

Google Scholar