Study on Microstructure and Mechanical Properties of Newly Developed High Carbon Fe-Mn-Cu-C TWIP Steels

Article Preview

Abstract:

The effects of high carbon content on the microstructure and tensile properties of Fe-20Mn-3Cu-xC TWIP steels were studied by OM, XRD, SEM analysis. The experimental results indicate that the amount of carbide and micro-porosity increased with the increasing of carbon content. The microstructures in the undeformed and deformed region of Fe-20Mn-3Cu-xC steels exhibit fully austenitic phase. The fractography of tensile samples reveals typical tough fracture microstructure with isometric dimples. The number of carbide in the as-cast structure, the yield strength and the tensile strength increase with the increasing of carbon addition, but the elongation rate increases at first and then decreases. TWIP steel has the optimum property when the carbon addition is 1.3 mass pct, of which the tensile strength is 1040.59 MPa, the elongation percentage is 98.08% and the strength-elongation product achieves 102061.07MPa•%. Fe-20Mn-3Cu-xC steels have high strain hardening capacity, and strain hardening rate (θ) and strain hardening index (n) both increase with the increasing of C addition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

233-239

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Frommeyer, U. Brüx and P. Neumann: ISIJ Int. Vol. 43 (2003), p.438.

Google Scholar

[2] Rintaro U, Kenji H, Noriyuki T and Kazutoshi K: Materials Science. Forum Vol. 1 (2007), pp.561-565.

Google Scholar

[3] H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers and P. J. Jacques: Acta Materialia. 58(2010), pp.2464-2476.

DOI: 10.1016/j.actamat.2009.12.032

Google Scholar

[4] J. D. Yoo, S. W. Hwang and K. T. Park: Materials Science and Engineering: A. Vol. 508 (2009), pp.234-240.

Google Scholar

[5] W. F. Yi, D. Y. Zhu, Z. B. Yang and S. M. Lin: Iron Steel, in press. In Chinese.

Google Scholar

[6] S. B. Li and J. X. Zhang: Development and Application OF Materials. Vol. 16 (2001), pp.39-42. In Chinese.

Google Scholar

[7] H.Y. Wen, D.Y. Zhu, M.J. Wang, W. Qiao and L. Liao: Iron Steel. Vol. 45 (2010), pp.74-78. In Chinese.

Google Scholar

[8] G. X. Hu, X. Cai and Y. H. Rong: Fundamentals Materials Science (SJTUP, China 2006). In Chinese.

Google Scholar

[9] Y. N. Petrov: Scripta Materialia. Vol. 53(2005), pp.1201-1206.

Google Scholar

[10] R. G. Xiong, R. Y. Fu, Y. Su and L. Li: Shanghai Metals. Vol. 30(2008), pp.12-15. In Chinese.

Google Scholar

[11] S. Vereammen, B. Blanpain and P. Wollants: Acta Materialia. Vol. 52(2004), p.2006.

Google Scholar

[12] Y. N. Yu: Principles of Metallography (Metallurgical Industry Press, China 2000). In Chinese.

Google Scholar

[13] W. Wang, Y. Wang, Z.R. Li and Y.M. Xia: Chin. J. Nonfer. Metals Vol. 18 (2008), pp.1440-1445. In Chinese.

Google Scholar

[14] E. E. Danaf, S. R. Kalidindi and R. D. Doherty: International Journal of Plasticity. Vol. 17(2001), p.1245.

Google Scholar

[15] S. R. Kalidindi: International Journal of Plasticity. Vol. 14(1998), p.1265.

Google Scholar

[16] D. L. Shu: Mechanical Properties of Engineering Materials (China Machine Press, China 2008). In Chinese.

Google Scholar