Hydrothermal Synthesis and Property of Rare Earth of Fluoride NaYF4:Er3+ Materials

Article Preview

Abstract:

High quality NaYF4 and NaYF4:Er3+ materials were prepared using EDTA-assisted hydrothermal method. The effects of doping of Er3+ on the shape of samples were discussed. The samples were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). XRD patterns show that the samples are hexagonal phase of NaYF4 and NaYF4:Er3+ with good crystallization. SEM images present that the samples of NaYF4 are homogeneous nanorods with a diameter of 342 nm and a length of 1043nm,the NaYF4:Er3+(5%) sample with a diameter of180.7nm and a length of 1220nm, and NaYF4:Er3+(10%) with a diameter of 139.4nm and a length of 939.9nm.The sizes of the NaYF4 and NaYF4:Er3+ nanoparticles are basically consistent with that calculated from XRD peak via the Scherrer equation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

569-572

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. J. Lu, Y.Peng.Front. Chem. China,Vol.5(2010),p.76

Google Scholar

[2] F.Q. Guo H.F.Li,Z.F. Zhang S.L. Meng D.Q.Li.Mater. Sci. Engin. B, Vol.163 (2009) , p.134

Google Scholar

[3] Q. G. Wang, L.B.Su, H.J.Li, L.H. Zheng, H.L. Tang, X. Guo, J. Xu. J.Cryst. Growth., Vol.318(2011),p.733

Google Scholar

[4] T. Grzyb, S Lis.J. Rare Earths,, Vol.27(2009),p.588

Google Scholar

[5] M.Kusatsugu,M. Kanno, T. Honma, T. Komatsu. J. Sol. Stat. Chem., Vol.181(2008), p.1176

Google Scholar

[6] A. Santana-Alonso, A.C. Yanes, J. Méndez-Ramos, J. del-Castillo, V.D. Rodríguez. Opti. Mater., Vol.33(2011),p.587

Google Scholar

[7] S.L. Zhong, Y.H.Lu, Z. Z. Huang, S.P. Wang J.J. Chen..Opt. Mater.,2010,3:966-970

Google Scholar

[8] X.L. Wang, S.L. Zhao, Y.J. Zhang, G.D. Sheng J.Rare Earths.Vol.28(2010),p.222 [9]G. X. Zhu, Y. D. Li, H. Z. Lian, Y. Z. Chen, S. G. Liu. Vol.21(2010),p.624

Google Scholar

[10] X. Liang, X. Wang, J. Zhuang, Q .Peng , Y. D. Li..Adv. Funct. Mater. Vol. 17 (2007), p.2757

Google Scholar

[11] J. L. Zhuang, L. F. Liang, H. H. Y. Sung, X. F. Yang, M. M. Wu, I. D. Williams, S. H. Feng, Q. Su. Inorg. Chem, Vol.46(2007),p.5404

Google Scholar

[12] J. C.Boyer, L.A. Cuccia, J. A Capobianco.Nano. Lett.,Vol.7(2007),p.847

Google Scholar

[13] Y.Wei, F. Q. Lu,X. R.Zhang,D. P.Chen.Chem. Mater.Vol.18(2006),p.5733

Google Scholar

[14] C.X.Li,J.Yang Z.W. Quan P.P. Yang D.Y. Kong,J.Lin..Chem.Mater.Vol.19(2007),p.4933

Google Scholar

[15] F.Tao, Z. J.Wang, L. Z.Yao, W. L.Cai, X. G.Li. J. Phys. Chem. C. Vol.111 (2007), p.3241

Google Scholar

[16] L.Gao,X.Ge,Z.L. Chai, G.H.Xu, X.Wang, C.Wang. Nano Res.Vol2(2009), p.565

Google Scholar

[17] W. U. Huynh, J. J.Dittmer, A. P Alivisatos.. Science, Vol.295(2002), 2425.

Google Scholar

[18] P. D. Cozzoli, L. Manna., Nature Mater., Vol.4, (2005),p.801.

Google Scholar

[19] Wang D L, Lieber C M. Nature Mater., , Vol.2(2003), p.355.

Google Scholar

[20] X.L. Wang, S.L. Zhao, Y.J. Zhang, G.D. Sheng. J. Rare Earths, Vol.28,(2010), p.22

Google Scholar