Synthesis and Microwave-Absorbing Properties of Ni-Carbon Sphere Composites

Article Preview

Abstract:

A simple solid-phase synthetic approach has been exploited for the preparation of Ni-carbon sphere composites using Ni(CH3COO)2•4H2O as nickel source, and vitamin C (L-ascorbic acid) as reductant and carbon source at 500oC for 6 h. The products were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectrometer (EDS), raman spectroscopy and microwave-absorbing measurement. The results show that the products are composed of Ni-carbon sphere particles with average diameters of 1.2 µm. Each sphere particle contains embedded Ni particles with average diameters of 83 nm. The reflection loss (RL) values of the products are lower −10 dB at 2–18 GHz, displaying broad range of microwave absorption. Their minimum RL value is about −33 dB at 4.2 GHz, which exhibit good microwave absorbing properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

552-555

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. L. Yan, X. Z. Li, L. Gao, S.H. Liou, D.J. Sellmyer, R.J.M. Veerdonk and K.W. Wierman: Appl. Phys. Lett. Vol. 83 (2003), p.3332

Google Scholar

[2] M. Yu, Y. Liu, A. Moser, D. Weller and D. J. Sellmyer: Appl. Phys. Lett. Vol. 75 (1999), p.3992

Google Scholar

[3] R. Nasri, A. Siblini, L. Jorat and G. Noyel: J. Magn. Magn. Mater. Vol. 161(1996), p.309

Google Scholar

[4] M. Bystrzejewski, A. Huczko and H. Lange: Sensors Actuators B Vol. 109(2005), p.81

Google Scholar

[5] J. H. Scott and S. A. Majetich: Phys. Rev. B. Vol.52 (1995), p.12564

Google Scholar

[6] Y. Saito: Carbon Vol. 33(1995), p.979

Google Scholar

[7] Y. Lu, Z. Zhu and Z. Liu: Carbon Vol. 43(2005), p.369

Google Scholar

[8] H. H. Song and X. H. Chen: Chem. Phys. Lett. Vol. 374(2003), p.400

Google Scholar

[9] Z. H. Wang, C. J. Choi, B. K. Kim, J. C. Kim and Z. D. Zhong: Carbon Vol.41(2003), p.1751

Google Scholar

[10] X. W. Wei, G. X. Zhu, C. J. Xia and Y.Ye: Nanotechnology Vol.17(2006), p.4307

Google Scholar

[11] G.X. Zhu, X.W. Wei and S. Jiang: J. Mater. Chem. Vol. 17 (2007), p.2301

Google Scholar

[12] A.C. Ferrari and J. Robertson: Phys. Rev. B Vol. 61(2000), p.14095

Google Scholar

[13] G.C. Xi, C. Wang, X. Wang, Y.T. Qian and H.Q. Xiao: J. Phys. Chem. C Vol.112(2008), p.965

Google Scholar

[14] C. Singh, M. S. P. Shaffer, K. K. K. Koziol, I. A. Kinloch and A. H.Windle: Chem. Phys. Lett. Vol. 372(2003), p.860

Google Scholar

[15] J. Huo, H. Song and X. Chen: Carbon Vol. 42 (2004), p.3177

Google Scholar

[16] A.A. El-Gendy, E.M.M. Ibrahim, V.O. Khavrus, Y. Krupskaya, S. Hampel and A. Leonhardt: Carbon Vol. 47(2009), p.2821

DOI: 10.1016/j.carbon.2009.06.025

Google Scholar

[17] M. A. Ermakova, D. Yu Ermakov, L. M. Plyasova and G. G. Kuvshinov: Catal. Lett. Vol. 62(1999), p.93

Google Scholar

[18] Y. Koltypin, A. Fernandez, T. C. Rojas, J. Campora, P. Palma and R. Prozorov: Chem. Mater. Vol. 11(1999), p.1331

Google Scholar

[19] N. W. Jian, L. Zhang, F. Yu and M. S. Zhao: J. Phys. Chem. B. Vol. 111(2007), p.2119

Google Scholar

[20] Q. Wang, K.Y. Ge, Q. J. Mao, X.N. Zhang and M. L. Zhou: New Tech.& New Proc. Vol. 29(2002), p.41

Google Scholar

[21] K.Y. Ge, Q. Wang, Q. J. Mao, C. X. Yu and M. L. Zhou: J. Func. Mater. Devic. Vol. 9 (2003), p.67

Google Scholar

[22] B. Li, Y.H. Zou and H.B. Liu: Carbon Techniques Vol. 26(2007), p.6

Google Scholar