Fabrication and Characterizes of TiO2 Nanomaterials Templated by Lyotropic Liquid Crystal

Article Preview

Abstract:

TiO2 nanomaterials were synthesized in lyotropic liquid crystal formed by nonionic surfactant TritonX-100 and TiOSO4 aqueous solution with NH3•H2O as precipitator. The lyotropic liquid crystals were characterized by means of POM and Low-angle XRD. FT-IR, TGA, XRD, TEM were used to characterize the TiO2 samples. It was found that all the lytropic liquid crystal were in lamellar liquid crysal phase and after casting the micro-structure of the LLC phase, the TiO2 samples were self-assemble to form lamellar, sphere and rod structures. According to the characterization results, possible formation mechanism was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

532-537

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada and H. Nakazawa: J. Am. Chem. Soc. Vol. 118 (1996), p.8329

Google Scholar

[2] J. Jitputti, T. Rattanavoravipa, S. Chuangchote, S. Pavasupree, Y. Suzuki and S. Yoshikawa: Catalysis Communications. Vol. 10 (2009), p.378

DOI: 10.1016/j.catcom.2008.09.026

Google Scholar

[3] Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang and L.D. Zhang: Chemical Physics Letters. Vol. 365 (2002), p.300

Google Scholar

[4] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir. Vol. 14 (1998), p.3160

DOI: 10.1021/la9713816

Google Scholar

[5] Y. Ao, J.J. Xu, D.G. Fu and C.W. Yuan: Catalysis Communications. Vol. 9 (2008), p.2574

Google Scholar

[6] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Nature. Vol. 359 (1992), p.710

Google Scholar

[7] G.S. Attard, J.C. Glyd and C.G. Goltner: Nature. Vol. 378 (6555), p.366

Google Scholar

[8] H.M. Yang, R. Guo and H.Q. Wang:Colloids and Surfaces. A: Physicochemical and Engineering Aspects. Vol. 180 (2001), p.243

Google Scholar

[9] X.C. Jiang, Y. Xie, J. Lu, L.Y. Zhu, W. He and Y.T. Qian: Chem. Mater. Vol. 13 (2001), p.1213

Google Scholar

[10] V. Tohver, P.V. Braun, M.U. Pralle and S.I. Stupp: Chemistry of Materials. Vol. 9 (1997), p.1495

Google Scholar

[11] P.V. Braun and S.I. Stupp: Materials research bulletin. Vol. 34 (1999), p.463

Google Scholar

[12] L.Y. Wang, X. Chen, J. Zhan, Y.C. Chai, C.J. Yang, L.M. Xu, W.C. Zhuang and B. Jing: J. Phys. Chem. B. Vol. 109 (2005), p.3189

Google Scholar

[13] L.M. Qi, Y.Y. Gao, J.M. Ma: A: Physicochemical and Engineering Aspects. Vol. 157 (1999), p.285

Google Scholar

[14] G.S. Attard, P.N. Bartlett, N.R.B. Coleman, J.M. Elliott, J.R. Owen and J.H. Wang: Science. Vol. 278 (1997), p.838

Google Scholar

[15] T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa, S. Mouri and S. Uoyama: Angewandte Chemie. Vol. 43 (2004), p.228

DOI: 10.1002/anie.200352630

Google Scholar

[16] T. Kijima, Y. Nagatomo, H.Takemoto, M. Uota, D. Fujikawa, Y. Sekiya, T. Kishishita, M. Shimoda, T. Yoshimura, H. Kawasaki and G. Sakai: Advanced functional materials. Vol. 19 (2009), p.545

DOI: 10.1002/adfm.200800966

Google Scholar

[17] C.Q. Wang, D.R. Chen and X.L. Jiao: Science and Technology of Advanced Materials. Vol. 10 (2009), p.1

Google Scholar

[18] S.V. Ahir, P.G. Petrov and E.M. Terentjev: Langmuir. Vol. 18 (2002), p.9140

Google Scholar