Influences of Tm and N Doping on Surface Properties and Photoactivities of Anatase-TiO2 Nanoparticles

Article Preview

Abstract:

Mesoporous anatase-TiO2 nanoparticles mono-doped and co-doped with thulium and nitrogen were synthesized via a modified sol-hydrothermal method, and characterized by XRD, BET, XPS, FT-IR, DRS and PL techniques. The results showed that the Tm-doping inhibited both the transformation from anatase to rutile phase and the recombination of photogenerated electron-hole pairs, as well as increased the content of surface hydroxyl group, then improved the UV photoactivity of TiO2. The N-doping led to forming the N–Ti–O and N–O–Ti structures, which narrow the electronic band structure, then improved the photoactivity in the visible light region. However, the best visible light photoactivity for degradating methylene blue (MB) in aqueous solution was obtained in the N-doped sample instead of the co-doped sample, implying that no synergetic effect rises from Tm and N co-doping.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

519-526

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. Lucky and P. A. Charpentier: Appl.Catal. B Vol. 96 (2010), p.516

Google Scholar

[2] B. S. Liu, L. P. Wen and X. J. Zhao: Sol. Energy Mater. Sol. Cells.Vol. 92 (2008), p.1

Google Scholar

[3] G. H. Tian, Y. J. Chen, K. Pan, D. J. Wang, W. Zhou, Z. Y. Ren and H. G. Fu: Appl. Surf. Sci. Vol. 256 (2010), p.3740

Google Scholar

[4] S. Horikoshia, Y. Minatodani, H. Sakai, M .Abe and N. Serpone: J.Photochem. Photobiol. A Vol. 217 (2011), p.191

Google Scholar

[5] S. W. Lee, I. S. Cho, D. K. Lee, D. W. Kim, T. H. Noh, C. H. Kwak, S. Park, K. S. Hong, J. K. Lee and H. S. Jung: J. Photochem. Photobiol. A. Vol. 213 (2010), p.129

Google Scholar

[6] M. Y. Xing, J. L. Zhang and F. Chen: Appl. Catal. B: Environ. Vol. 89 (2009), p.563

Google Scholar

[7] M. D'Arienzo, R. Scotti, L. Wanba, C. Battocchio, E. Bemporad, A. Nale and F. Morazzoni: Appl. Catal. B: Environ.Vol. 93 (2009), p.149

Google Scholar

[8] M. J. Kim, K. D. Kim, H. O. Seo, Y. Luo, N. K. Dey and Y. D. Kim: Appl. Surf. Sci. Vol. 257 (2011), p.2489

Google Scholar

[9] J. Yang, H. Z. Bai, X. C. Tan and J. S. Lian: Appl. Surf. Sci. Vol. 253 (2006), p. (1988)

Google Scholar

[10] Y. W. Sakai, K. Obata, K. Hashimoto and H. Irie: Vacuum Vol. 83 (2009), p.683

Google Scholar

[11] F. Y. Wei, L. S. Ni and P. Cui: J. Hazard. Mater. Vol. 156 (2008), p.135

Google Scholar

[12] J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi and C. Pulgarin: Appl. Catal. B: Environ. Vol. 84 (2008), p.448

DOI: 10.1016/j.apcatb.2008.04.030

Google Scholar

[13] W. A. Wang, Q. Shi, Y. P.Wang, J. L. Cao, G. Q. Liu and P. Y. Peng: Appl. Surf. Sci. Vol. 257 (2011), p.3688

Google Scholar

[14] Y. Cong, B. Z. Tian and J. L. Zhang: Appl. Catal. B: Environ. Vol. 101 ( 2011), p.376

Google Scholar

[15] H. J. Liu, G. G. Liu, G. H. Xie, M. L. Zhang, Z. H. Hou and Z. W. He: Appl. Surf. Sci. Vol. 257 (2011), p.3728

Google Scholar

[16] T. Yu, X. Tan and L. Zhao: J. Hazard. Mater. Vol. 176 (2010), p.829

Google Scholar

[17] Q. Xiao, Z. C. Si, Z. M. Yu and G. Z. Qiu: J. Alloys Compd. Vol. 450 (2008), p.426

Google Scholar

[18] Z. Y. Lu, H. Q. Jiang, J. S. Li, C. Y. Wang and P. P. Yan: Journal of the Chinese rare earth society Vol. 28 (2010), p.553

Google Scholar

[19] X. H. Wu, P. B. Su, H. L. Liu and L. L. Qi: Journal of Rare earths Vol. 27 (2009), p.739

Google Scholar

[20] T. Yu, X. Tan, L. Zhao, X. Y. Yu, P. Chen and J. Wei: Chem. Eng. J. Vol. 157 (2010), p.86

Google Scholar

[21] H. R. Zhang, K. Q. Tan, H. W. Zheng, Y. Z. Gu and W. F. Zhang: Mater. Chem. Phys. Vol. 125 (2011), p.156

Google Scholar

[22] J. J. Xu, Y. H. Ao, D. G. Fu and C. W. Yuan: J. Colloid Interface Sci. Vol. 328 (2008), p.447

Google Scholar

[23] Y. F. Ma, J. L. Zhang, B. Z. Tian, F. Chen and L. Z. Wang: J. Hazard. Mater. Vol. 182 (2010), p.386

Google Scholar

[24] H. Q. Jiang, P. Wang, X. L. Guo and H. Z. Xian: Russ. Chem. Bull. Vol.55 (2006), p.1743

Google Scholar

[25] M. Z. Xie, L. Q. Jing, J. Zhou, J. S. Lin and H. G. Fu: J. Hazard. Mater. Vol. 176 (2010), p.139

Google Scholar

[26] Q. Xiao, L. L. Ouyang, L. Gao and W. J. Jiang: Mater. Chem. Phys. Vol. 124 (2010), p.1210

Google Scholar

[27] Y. S. Li, F. L. Jiang, Q. Xiao, R. Li, K. Li, M. F. Zhang, A. Q. Zhang S. F. Sun and Y. Liu: Appl. Catal. B: Environ. Vol. 101 (2010), p.118

Google Scholar

[28] H. Diker, C. Varlikli, K. Mizrak and A. Dana: Energy Vol. 36 (2011), p.1243

Google Scholar

[29] C. Y. Wang, H. Q. Jiang, J. S. Li, Z. Y. Lu and P. P.Yan: Journal of Donghua University (Eng. Ed.) Vol. 27 (2010), p.38

Google Scholar