Spectroscopic Properties of Er3+-Doped Ga2O3-GeO2-Bi2O3-PbO Glass

Article Preview

Abstract:

Spectroscopic properties in Er3+-doped Ga2O3-GeO2-Bi2O3-PbO(BP)glass have been investigated and their promising application as Er3+-doped fiber amplifiers (EDFA) has also been evaluated under the excitation of 980 nm. The important roles of Bi2O3 substitution for PbO on spectroscopic properties, such as Judd-Ofelt intensity parameters (t=2, 4, 6) and emission spectra of Er3+, have been studied. The calculated peak emission cross-section of the 4I13/2→4I15/2 transition of Er3+ ions are 16.03×10-21 cm2 when the substituted PbO content by Bi2O3 is about 25 mol. The product of the peak emission cross-section ( ) and the full width at half-maximum (FWHM) of the sample is~689.29×10-28 cm3, which is higher than that of Er3+-doped silicate, phosphate and ZBLAN glasses. It was found that the substitution of Bi2O3 for PbO provides two potentials: broadening the full width at half-maximum of 1.53 μm fluorescence and improving the values of FWHM× of Er3+. The results strongly support that the Er3+-doped BP2 glass could be identified as a promising material for achieving 1.53 μm fiber amplifier.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

997-1001

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. Adam:Chem. Rev. Vol. 102 (2002), p.2461

Google Scholar

[2] Q.Y. Zhang, G. F. Yang, S. Buddhudu and Z. H. Jiang: Chin. Phys. Lett. Vol. 22 (2005), p.715

Google Scholar

[3] S. Tanabe: J. Non-Cryst. Solids Vol. 259 (1999), p.1

Google Scholar

[4] T. Li, Q. Y. Zhang, Y. H. Liu, J. J. Zhang, Z. D. Deng and Z. H. Jiang: Chin. Phys. Lett. Vol. 21 (2004), p.1147

Google Scholar

[5] J. H. Song, J. Heo and S. H. Park: J. Appl. Phys. Vol. 93 (2003), p.9441

Google Scholar

[6] W. H. Dumbaugh and J. C.Lapp: J. Am. Ceram. Soc. Vol. 75 (1992), p.2315

Google Scholar

[7] A. A. Kharlamov, R. M. Almeida and J. Heo: J. Non-Cryst. Solids. Vol. 202 (1996), p.233

Google Scholar

[8] W. H. Huang, C. S. Ray and D. E. Day: J. Am. Ceram. Soc. Vol. 77 (1994), p.1017

Google Scholar

[9] S. Q. Xu, Z.M. Yang, S.X. Dai, J.H. Yang, L. L. Hu and Z. H. Jiang: J. Alloys Compd. Vol. 361 (2003), p.313

Google Scholar

[10] X.Zou and T. Izumitani: J. Non-Cryst. Solids. Vol. 162 (1993), p.68

Google Scholar

[11] Y. G. Choi, K. H. Kim and J. Heo: J. Am. Ceram. Soc. Vol. 82 (1999), p.2762

Google Scholar

[12] D.E. McCumber: Phys. Rev. Vol. 134 (1964), p.299

Google Scholar

[13] W. J. Miniscalco and R. S. Quimby: Opt. Lett. Vol. 16 (1991), p.258

Google Scholar

[14] X. L. Zou and T Izumitani: J. Non-Cryst. Solids Vol. 162 (1993), p.68

Google Scholar

[15] S. B. Jiang, T. Luo, B. S. Hwang, F. Smekatala, K. Seneschal, J. Lucas and N. Peyghambarian : J. Non-Cryst. Solids Vol. 263 (2000), p.364

DOI: 10.1016/s0022-3093(99)00646-8

Google Scholar

[16] S. X. Shen, M. Naftaly and A. Jha: Proc. SPIE Vol. 3849 (1999), p.103

Google Scholar

[17] J. H. Yang, S. X. Dai, N. L. Dai, S. Q. Xu, L. Wen, L. L. Hu and Z. H. Jiang: J. Opt. Soc. Am. B Vol. 20 (2003), p.810

Google Scholar

[18] S. X. Dai, J. H. Yang, L. Wen, L. L. Hu and Z. H. Jiang: J. Lumin. Vol. 104 (2003), p.55

Google Scholar