Multiwalled Carbon Nanotube Growth Mechanism on Conductive and Non-Conductive Barriers

Article Preview

Abstract:

We report on the catalytic growth of multiwalled carbon nanotubes by plasma enhanced chemical vapor deposition using Ni and Co catalyst deposited on SiO2, Si3N 4,ITO and TiN Xbarrier layers; layers which are typically used as diffusive barriers of the catalyst material. Results revealed higher growth rates on conductive ITO and TiN Xas compared to non con-ductiveSiO2, and Si3N 4,barriers. Micrograph images reveal the growth mechanism for nanotubes grown on SiO2, Si3N 4 and ITO to be tip growth while base growth was observed for the TiN X barrier layer. Initial conclusion suggests that conductive diffusion barrier surfaces promotes growth rates however it is possible that multiwalled carbon nanotubes grown onSiO2, and Si3N 4,were encumbered as a result of the formation of silicide as shown in the results here.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

1201-1204

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Suehiro: Biomicrofluidics Vol. 4 (2010) p.022804.

Google Scholar

[2] W. Lin, S. Huang, and W. Chen: J. Semiconductors Vol. 31 (2010) p.024006.

Google Scholar

[3] G.F. Close, S. Yasuda, B. Paul, S. Fujita, P.H.S. Wong: Nano Lett. Vol. 8 (2008) p.706.

Google Scholar

[4] A. Subramaniam, L.X. Dong, B.J. Nelson, A. Ferreira: Appl. Phys. Lett. Vol. 96 (2010) p.073116.

Google Scholar

[5] J. Chen, W.D. Zhang, J.S. Ye: Electrochem. Comm. Vol. 10, (2008) pp.1268-1271.

Google Scholar

[6] C. Gau, H.S. Ko, H.T. Chen: Nanotechnology Vol. 20 (2009) p.185503.

Google Scholar

[7] R. Brukh, S. Mitra, Chem. Phys. Lett.: Vol. 424 (2006) pp.126-132.

Google Scholar

[8] J.I. Sohn, C.J. Choi, S. Lee, T.Y. Seong, Appl. Phys. Lett.: Vol. 78 (2001) pp.3130-3132.

Google Scholar

[9] T. Nguyen, H.L. Ho, D.E. Kotecki, T.D. Nguyen: J. Mater. Res., Vol. 8, 9 (1993) pp.2354-2361.

Google Scholar

[10] D. Potoczna-Petru, L. Kępiński, L. Krajczyk: React. Kinet. Catal. Lett. Vol. 97 (2009) p.321.

DOI: 10.1007/s11144-009-0033-1

Google Scholar

[11] G. Ruhl, B. Fröschle, P. Ramm, W. Pamler: Appl. Surf. Sci. (1995) pp.382-387.

Google Scholar

[12] J. Dijon, P.D. Szkutnik, A. Fournier, T. Goislard de Monsabert, H. Okuno, E. Quesnel, et al.: Carbon Vol. 48, 13 (2010) pp.3953-3963.

DOI: 10.1016/j.carbon.2010.06.064

Google Scholar

[13] J.X. Tang, C.S. Lee, S.T. Lee: Appl. Phys. Lett. Vol. 87 (2005) p.252110.

Google Scholar

[14] S.Y. Kang, B.S. Kim, C.S. Hwang, H.J. Kim, J.Y. Kim, K. Lee, et al.: Jap. J. Appl. Phys. Vol. 43, 9 (2004) pp.6635-6639.

Google Scholar