Study of Heating Effect on Specific Surface Area, and Changing Optical Properties of ZnO Nanocrystals

Article Preview

Abstract:

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

1205-1210

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Khalifa Al-Azri, Roslan Md Nor, Y. m. Amin, Majid. S. Al-Ruqeishi. Applied Surface Science, (2010).

Google Scholar

[2] J. V. Foreman, H. O. Everitt. Physical Review B, 81 (2010) 115318.

Google Scholar

[3] Ben E. Urban, Jie Lin, Os Kumar, Kasilingam Senthilkumar, Yasuhisa Fujita, Arup Neogi. Optical Materials Express, 1, 4 (2011) 658-669.

Google Scholar

[4] Aliaksandr V. Kachynski, Andrey N. Kuzmin, Marcin Nyk, Indrajit Roy, Paras N. Prasad . J Phys Chem C Nanomater Interfaces. 112(29) (2008) 10721-10724.

DOI: 10.1021/jp801684j

Google Scholar

[5] WANG Li, ZHAO Bin, CHANG LiXian & ZHENG WenJun. Science in China Series B: Chemistry, 50 (2007) 224-229.

Google Scholar

[6] N. Faal Hamedani and F. Farzaneh. Journal of Science, I. R. Iran, 17 (2006) 231-234.

Google Scholar

[7] Ming Wang, Lide Zhang. Materials Letters, 63 (2009) 301-303.

Google Scholar

[8] George Cramer, NNIN REU, Research Accomplishments, (2006), 34-35.

Google Scholar

[9] Dojalisa Sahu, B. S. Acharya, B. P. Bag, Th. Basanta Singh and R. K. Gartia, , Journal of Luminescence 130 (2010) 1371-1378.

DOI: 10.1016/j.jlumin.2010.02.049

Google Scholar

[10] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morko. Journal of Applied Physics 9 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[11] Santi Maensiri, Paveena Laokul, Vinich Promarak, Journal of Crystal Growth 289 (2006) 102-106.

Google Scholar

[12] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Materials Letters 64 (2010) 1147-1149.

DOI: 10.1016/j.matlet.2010.02.033

Google Scholar

[13] Jinato Tian, LIjuan Chen, Jinhui Dai, Xin Wang, Yansheng Yin, Pingwei Wu, Ceramics International 35 (2009) 2261-2270.

Google Scholar

[14] Seema Rani, Poonam Suri, P.K. Shishodia, R.M. Mehra, Solar Energy Materials & Solar Cells 92 (2008) 1639-1645.

DOI: 10.1016/j.solmat.2008.07.015

Google Scholar

[15] Yongfa Zhu, Li Zhang, Chong Gao, Lili Cao, The synthesis of nanosized TiO2 powder using a sol– gel method with TiCl4 as a precursor, J. Mater. Sci. 35 (2000)4049–4054.

Google Scholar

[16] Rizwan Wahab, S.G. Ansari, Young-Soon Kim, Hyung-Kee Seo, Hyung-Shik Shin, Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical Method, Appl. Surf. Sci. 253 (2007) 7622–7626.

DOI: 10.1016/j.apsusc.2007.03.060

Google Scholar

[17] http: /en. wikipedia. org/wiki/Sphere.

Google Scholar

[18] Junyong kang, Shin Tsunekawa, Atsuo Kasuya, Applied Surface Science, 174 (2001) 306-309.

Google Scholar

[19] A. A. Higazy, A. Hussein, M. A. Ewaida and M. El-Hofy, Journal of material science Letters, (1988) 453-456.

Google Scholar

[20] S. Mandal, M.L.N. Goswami, K. Das, A. Dhar, S.K. Ray, Thin Solid Films 516 (2008) 8702–8706.

DOI: 10.1016/j.tsf.2008.05.016

Google Scholar

[21] Aurangzeb Khan, Martin E. Kordesch. Physica E, 30 (2005) 51–54.

Google Scholar