Repulsive Nonlinear Schrödinger Equation and Bose-Einstein Condensate in Phase Space

Article Preview

Abstract:

Within the framework of the quantum phase-space representation established by Torres-Vega and Frederick, the rigorous solutions of repulsive nonlinear Schrödinger equation are solved, which models the dilute-gas Bose-Einstein condensate. The eigenfunctions in position and momentum spaces can be obtained through the “Fourier-like” projection transformation from the phase-space eigenfunctions. It shows that the wave-mechanics method in the phase-space representation could be extended to the nonlinear Schrödinger equations. The research provides the foundation for the approximate calculation in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

132-137

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. P. Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev., vol. 40, pp.749-759, (1932).

Google Scholar

[2] J. R. Klauder and B. S. Skagerstum, Coherent States. Singapore: World Scientific, (1985).

Google Scholar

[3] G. Torres-Vega and J. H. Frederick, Quantum mechanics in phase space: new approaches to the correspondence principle, J. Chem. Phys., vol. 93, pp.8862-8874, (1990).

DOI: 10.1063/1.459225

Google Scholar

[4] G. Torres-Vega and J. H. Frederick, A quantum mechanical representation in phase space, J. Chem. Phys., vol. 98, pp.3103-3120, (1993).

DOI: 10.1063/1.464085

Google Scholar

[5] K. B. Møller, T. G. Jorgensen, and G. Torres-Vega, On coherent-state representations of quantum mechanics: wave mechanics in phase space, J. Chem. Phys., vol. 106, pp.7228-7240, (1997).

DOI: 10.1063/1.473684

Google Scholar

[6] Q. S. Li and J. Lu, One-dimensional hydrogen atom in quantum phase-space representation: rigorous solutions, Chem. Phys. Lett., vol. 336, pp.118-122, (2001).

DOI: 10.1016/s0009-2614(01)00081-1

Google Scholar

[7] J. Lu, Q. S. Li, and Z. Sun, Rigorous solutions of particle in delta potential fields in phase space, Phys. Chem. Chem. Phys. (PCCP), vol. 3, pp.1022-1026, (2001).

DOI: 10.1039/b008186h

Google Scholar

[8] J. Lu, Wave mechanics in quantum phase space: harmonic oscillator, Physica Scripta, vol. 69, pp.84-90, (2004).

DOI: 10.1238/physica.regular.069a00084

Google Scholar

[9] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., vol. 71, pp.463-512, (1999).

DOI: 10.1103/revmodphys.71.463

Google Scholar

[10] L. D. Carr, J. N. Kutz, and W. P. Reinhardt, Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate, Phys. Rev. E, vol. 63, p.066604, (2001).

DOI: 10.1103/physreve.63.066604

Google Scholar

[11] W. A. Strauss, The Nonlinear Schrödinger Equation. New York: North-Holland, (1982).

Google Scholar

[12] M. N. Vinoj and V. C. Kuriakose, Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations, Phys. Rev. E, vol. 62, pp.8719-8725, (2000).

DOI: 10.1103/physreve.62.8719

Google Scholar

[13] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Dynamical quantum noise in trapped Bose-Einstein condensates, Phys. Rev. A, vol. 58, pp.4824-4835, (1998).

DOI: 10.1103/physreva.58.4824

Google Scholar

[14] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity, Phys. Rev. A, vol. 62, p.063610, (2000).

DOI: 10.1103/physreva.62.063610

Google Scholar

[15] M. Kunze, T. Küpper, V. K. Mezentsev, E. G. Shapiro, and S. Turisyn, Nonlinear solitary waves with Gaussian tails, Physica D, vol. 128, pp.273-295, (1999).

DOI: 10.1016/s0167-2789(98)00297-8

Google Scholar

[16] W. M. Liu, B. Wu, and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates, Phys. Rev. Lett., vol. 84, pp.2294-2297 (2000).

DOI: 10.1103/physrevlett.84.2294

Google Scholar

[17] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York: Dover, (1972).

Google Scholar

[18] Q. S. Li and X. G. Hu, On the quantum mechanical representation in phase space, Physica Scripta, vol. 51, pp.417-422, (1995).

Google Scholar