[1]
E. P. Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev., vol. 40, pp.749-759, (1932).
Google Scholar
[2]
J. R. Klauder and B. S. Skagerstum, Coherent States. Singapore: World Scientific, (1985).
Google Scholar
[3]
G. Torres-Vega and J. H. Frederick, Quantum mechanics in phase space: new approaches to the correspondence principle, J. Chem. Phys., vol. 93, pp.8862-8874, (1990).
DOI: 10.1063/1.459225
Google Scholar
[4]
G. Torres-Vega and J. H. Frederick, A quantum mechanical representation in phase space, J. Chem. Phys., vol. 98, pp.3103-3120, (1993).
DOI: 10.1063/1.464085
Google Scholar
[5]
K. B. Møller, T. G. Jorgensen, and G. Torres-Vega, On coherent-state representations of quantum mechanics: wave mechanics in phase space, J. Chem. Phys., vol. 106, pp.7228-7240, (1997).
DOI: 10.1063/1.473684
Google Scholar
[6]
Q. S. Li and J. Lu, One-dimensional hydrogen atom in quantum phase-space representation: rigorous solutions, Chem. Phys. Lett., vol. 336, pp.118-122, (2001).
DOI: 10.1016/s0009-2614(01)00081-1
Google Scholar
[7]
J. Lu, Q. S. Li, and Z. Sun, Rigorous solutions of particle in delta potential fields in phase space, Phys. Chem. Chem. Phys. (PCCP), vol. 3, pp.1022-1026, (2001).
DOI: 10.1039/b008186h
Google Scholar
[8]
J. Lu, Wave mechanics in quantum phase space: harmonic oscillator, Physica Scripta, vol. 69, pp.84-90, (2004).
DOI: 10.1238/physica.regular.069a00084
Google Scholar
[9]
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., vol. 71, pp.463-512, (1999).
DOI: 10.1103/revmodphys.71.463
Google Scholar
[10]
L. D. Carr, J. N. Kutz, and W. P. Reinhardt, Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate, Phys. Rev. E, vol. 63, p.066604, (2001).
DOI: 10.1103/physreve.63.066604
Google Scholar
[11]
W. A. Strauss, The Nonlinear Schrödinger Equation. New York: North-Holland, (1982).
Google Scholar
[12]
M. N. Vinoj and V. C. Kuriakose, Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations, Phys. Rev. E, vol. 62, pp.8719-8725, (2000).
DOI: 10.1103/physreve.62.8719
Google Scholar
[13]
M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Dynamical quantum noise in trapped Bose-Einstein condensates, Phys. Rev. A, vol. 58, pp.4824-4835, (1998).
DOI: 10.1103/physreva.58.4824
Google Scholar
[14]
L. D. Carr, C. W. Clark, and W. P. Reinhardt, Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity, Phys. Rev. A, vol. 62, p.063610, (2000).
DOI: 10.1103/physreva.62.063610
Google Scholar
[15]
M. Kunze, T. Küpper, V. K. Mezentsev, E. G. Shapiro, and S. Turisyn, Nonlinear solitary waves with Gaussian tails, Physica D, vol. 128, pp.273-295, (1999).
DOI: 10.1016/s0167-2789(98)00297-8
Google Scholar
[16]
W. M. Liu, B. Wu, and Q. Niu, Nonlinear effects in interference of Bose-Einstein condensates, Phys. Rev. Lett., vol. 84, pp.2294-2297 (2000).
DOI: 10.1103/physrevlett.84.2294
Google Scholar
[17]
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York: Dover, (1972).
Google Scholar
[18]
Q. S. Li and X. G. Hu, On the quantum mechanical representation in phase space, Physica Scripta, vol. 51, pp.417-422, (1995).
Google Scholar