[1]
Horn, B., & Schunck, B. Determining optical flow. Artificial Intelligence, Vol. 17, (1981), p.185–203.
DOI: 10.1016/0004-3702(81)90024-2
Google Scholar
[2]
Nagel, H. -H., & Enkelmann, W. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 3, (1986), p.565–593.
DOI: 10.1109/tpami.1986.4767833
Google Scholar
[3]
Sun, D., Roth, S., Lewis, J., & Black,M. Learning optical flow. In Proceedings of the European conference on computer vision. Vol. 3, (2008), p.83–97.
Google Scholar
[4]
Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B., & Seidel, H. -P. Complementary optic flow. In Proceedings of seventh international workshop on energy minimization methods in computer vision and pattern recognition. (2009).
DOI: 10.1007/978-3-642-03641-5_16
Google Scholar
[5]
Seitz, S., & Baker, S. Filter flow. In Proceedings of the IEEE international conference on computer vision. (2009).
Google Scholar
[6]
Trobin, W., Pock, T., Cremers, D., & Bischof, H. Continuous energy minimization via repeated binary fusion. In Proceedings of the European conference on computer vision. Vol. 4, (2008), p.677–690.
DOI: 10.1007/978-3-540-88693-8_50
Google Scholar
[7]
Nir, T., Bruckstein, A., &Kimmel, R. Over-parameterized variational optical flow. International Journal of Computer Vision, Vol. 76, (2008), p.205–216.
DOI: 10.1007/s11263-007-0051-2
Google Scholar
[8]
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In Pajdla, T., Matas, J., eds.: Computer Vision – ECCV 2004, Part IV. Vol. 3024, (2004), p.25–36.
DOI: 10.1007/978-3-540-24673-2_3
Google Scholar
[9]
Bruhn, A., Weickert, J. Towards ultimate motion estimation: Combining highest accuracy with real-time performance. In Proceedings of the Tenth International Conferenceon Computer Vision. Vol. 1, (October 2005), p.749–755.
DOI: 10.1109/iccv.2005.240
Google Scholar
[10]
Baker, S., & Matthews, I. Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, Vol. 46, (2004), p.221–255.
DOI: 10.1023/b:visi.0000011205.11775.fd
Google Scholar
[11]
Xiao Jia, Yuanquan Wang. An Edge Preserving Gradient Vector Flow for Active Contours. In Proceedings of the 2nd International Congress on Image and Signal, (Oct. 2009), pp.1-4.
DOI: 10.1109/cisp.2009.5304695
Google Scholar