[1]
G. Laister. Approximate Rieman solutions of shallow water equations. J. Hydr. Res., Delft, The Netherlands, 1988. 26(3): 293-306.
Google Scholar
[2]
V. S. Rao and G. Latha. A slope modification method for shallow water equations, Int. J. Numer. Methods in Fluids, 1992, 14: 189-196.
DOI: 10.1002/fld.1650140206
Google Scholar
[3]
M. Nujic. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows, J. Hydr. Res., Delft, The Netherlands, 1995, 33(1): 101-111.
Google Scholar
[4]
R. Garcia and R. A. Kahawita. Numerical solution of the St. Venant equations with MacComack finite-difference scheme. Int. J. Numer. Methods in Fluids, 1986, 6: 259-274.
DOI: 10.1002/fld.1650060502
Google Scholar
[5]
T. Molls and F. Molls. Space-time conservation method applied to Saint Venant equations, J. Hydr. Engrg., ASCE, 1998, 124(5): 501-508.
DOI: 10.1061/(asce)0733-9429(1998)124:5(501)
Google Scholar
[6]
K. Hu, C. G. Mingham and D. M. Causon. A bore-capture finite volume method for open-channel flows, Int. J. Numer. Methods in Fluids, 1998, 28: 1241-1261.
DOI: 10.1002/(sici)1097-0363(19981130)28:8<1241::aid-fld772>3.0.co;2-2
Google Scholar
[7]
C. G. Mingham and D. M. Causon. High-resolution finite volume method for shallow water flows,J. Hydr. Engrg., ASCE, 1998, 124(6): 605-614.
DOI: 10.1061/(asce)0733-9429(1998)124:6(605)
Google Scholar