[1]
A. Alkan, E. Özcan, Memetic Algorithms for timetabling, Yeditepe University, 34755 Kayisdagi - Istanbul/Turkey, (2003).
Google Scholar
[2]
Kumar R, Singh PK , Pareto evolutionary Algorithm hybridized with local search for biobjective TSP, In: Grosan C, Abraham A, Ishibuchi H (eds) Hybrid Evolutionary Algorithms, Springer, Berlin, 2007, p.361–98.
DOI: 10.1007/978-3-540-73297-6_14
Google Scholar
[3]
Nguyen Quoc Viet Hung, Ta Quang Binh and Duong Tuan Anh, A Memetic Algorithm for Timetabling" Proceedings of 3nd Int, Conf. RIVF, 05 Research Informatics Vietnam-Francophony , 2005 , p.289 – 294.
Google Scholar
[4]
H Ishibuchi, Y Hitotsuyanagi, N Tsukamoto, Y., Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study , Multi-objective Memetic Algorithms, 2009 , p.27–49.
DOI: 10.1007/978-3-540-88051-6_2
Google Scholar
[5]
Ishibuchi, H., Murata, T., Multi-Objective Genetic Local Search Algorithm, In: Proc. of 1996 IEEE International Conference on Evolutionary Computation, 1996, p.119–124.
DOI: 10.1109/icec.1996.542345
Google Scholar
[6]
Jaszkiewicz, A., Genetic Local Search for Multi-Objective Combinatorial Optimization, European Journal of Operational Research 137, 2002, p.50–71.
DOI: 10.1016/s0377-2217(01)00104-7
Google Scholar
[7]
Knowles, J.D., Corne, D.W., M-PAES: A Memetic Algorithm for Multiobjective Optimization, In: Proc. of 2000 Congress on Evolutionary Computation, 2002, p.325–332.
DOI: 10.1109/cec.2000.870313
Google Scholar
[8]
Robert L. Devaney, An Introduction to Chaotic Dynamical System, 2nd Edition. Westview Press, (2003).
Google Scholar
[9]
Duan, H. and Yu, X., Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem, Proceedings of the IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, 2007 , pp.92-95.
DOI: 10.1109/adprl.2007.368174
Google Scholar
[10]
Adriana Lara, Gustavo Sanchez, Carlos A. Coello Coello and Oliver Schütze, HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation, Vol. 14, No. 1, February (2010).
DOI: 10.1109/tevc.2009.2024143
Google Scholar
[11]
Konak, A., Coit, D.W., Alice E.S., Multi-objective optimization using genetic Algorithms: A tutorial. Reliability Engineering and System Safety, , 2006, pp.992-1007.
DOI: 10.1016/j.ress.2005.11.018
Google Scholar
[12]
D. J. Jefferies, J. H. B. Deane and G. G. Johnstone, An introduction to chaos, Electronics and Communication Engineering Journal, 1989, pp.115-123.
Google Scholar
[13]
F. Chen, Chaos theory and its application, Peking: Chinese Electrical Power Press, (1998).
Google Scholar
[14]
Shuang Cong, Guodong Li and Xianyong Feng, An Improved Algorithm of Chaos Optimization, Proceedings of the 8th IEEE International Conference on Control and Automation Xiamen, China, June 9-11, 2010, pp.1196-1200.
Google Scholar
[15]
Deb, K., Thiele, L. , Laumanns, M. and Zitzler, E. , Scalable Multi-Objective Optimization Test Problems, CEC 2002 , IEEE Press, 2002, p.825 – 830.
DOI: 10.1109/cec.2002.1007032
Google Scholar