Multi-Objective Chaos Memetic Algorithm for DTLZ Problems

Article Preview

Abstract:

Based on Multi-Objective Memetic Algorithm (MOMA), a novel Multi-Objective Chaos Memetic Algorithm (MOCMA) is proposed . MOCMA is presented to keep population’s diversity, avoid local optimum and improve performance of Multi-Objective Memetic Algorithm. By virtue of the over-spread character of chaos sequence, it is used to generate chromosome to overcome redundancies. At the same time, searching space is enlarged by using sensitivity of chaos initial value. The comparisons of MOCMA with NSGAII in DTLZ problems suggest that MOCMA clearly outperforms in converging towards the true pareto front and finding the spread of solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

3676-3681

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Alkan, E. Özcan, Memetic Algorithms for timetabling, Yeditepe University, 34755 Kayisdagi - Istanbul/Turkey, (2003).

Google Scholar

[2] Kumar R, Singh PK , Pareto evolutionary Algorithm hybridized with local search for biobjective TSP, In: Grosan C, Abraham A, Ishibuchi H (eds) Hybrid Evolutionary Algorithms, Springer, Berlin, 2007, p.361–98.

DOI: 10.1007/978-3-540-73297-6_14

Google Scholar

[3] Nguyen Quoc Viet Hung, Ta Quang Binh and Duong Tuan Anh, A Memetic Algorithm for Timetabling" Proceedings of 3nd Int, Conf. RIVF, 05 Research Informatics Vietnam-Francophony , 2005 , p.289 – 294.

Google Scholar

[4] H Ishibuchi, Y Hitotsuyanagi, N Tsukamoto, Y., Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study , Multi-objective Memetic Algorithms, 2009 , p.27–49.

DOI: 10.1007/978-3-540-88051-6_2

Google Scholar

[5] Ishibuchi, H., Murata, T., Multi-Objective Genetic Local Search Algorithm, In: Proc. of 1996 IEEE International Conference on Evolutionary Computation, 1996, p.119–124.

DOI: 10.1109/icec.1996.542345

Google Scholar

[6] Jaszkiewicz, A., Genetic Local Search for Multi-Objective Combinatorial Optimization, European Journal of Operational Research 137, 2002, p.50–71.

DOI: 10.1016/s0377-2217(01)00104-7

Google Scholar

[7] Knowles, J.D., Corne, D.W., M-PAES: A Memetic Algorithm for Multiobjective Optimization, In: Proc. of 2000 Congress on Evolutionary Computation, 2002, p.325–332.

DOI: 10.1109/cec.2000.870313

Google Scholar

[8] Robert L. Devaney, An Introduction to Chaotic Dynamical System, 2nd Edition. Westview Press, (2003).

Google Scholar

[9] Duan, H. and Yu, X., Hybrid Ant Colony Optimization Using Memetic Algorithm for Traveling Salesman Problem, Proceedings of the IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning, 2007 , pp.92-95.

DOI: 10.1109/adprl.2007.368174

Google Scholar

[10] ‏ Adriana Lara, Gustavo Sanchez, Carlos A. Coello Coello and Oliver Schütze, HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation, Vol. 14, No. 1, February (2010).

DOI: 10.1109/tevc.2009.2024143

Google Scholar

[11] Konak, A., Coit, D.W., Alice E.S., Multi-objective optimization using genetic Algorithms: A tutorial. Reliability Engineering and System Safety, ‏ , 2006, pp.992-1007.

DOI: 10.1016/j.ress.2005.11.018

Google Scholar

[12] D. J. Jefferies, J. H. B. Deane and G. G. Johnstone, An introduction to chaos, Electronics and Communication Engineering Journal, 1989, pp.115-123.

Google Scholar

[13] F. Chen, Chaos theory and its application, Peking: Chinese Electrical Power Press, (1998).

Google Scholar

[14] Shuang Cong, Guodong Li and Xianyong Feng, An Improved Algorithm of Chaos Optimization, Proceedings of the 8th IEEE International Conference on Control and Automation Xiamen, China, June 9-11, 2010, pp.1196-1200.

Google Scholar

[15] Deb‏, K., Thiele, L. ‏, Laumanns‏, M. and Zitzler, E. ‏, Scalable Multi-Objective Optimization Test Problems, CEC 2002 , IEEE Press, 2002, p.825 – 830.

DOI: 10.1109/cec.2002.1007032

Google Scholar