Tracking a Chaotic System Using an Observer-Based Nonlinear State-Feedback Controller

Article Preview

Abstract:

This paper attempts to design a Luenberger-like nonlinear observer and a nonlinear state-feedback controller for trajectory tracking of a single-input/single-output nonlinear system exhibiting chaotic dynamics. Using a nonlinear transformation, the nonlinear system is first transformed into a linear system and thereafter a control law is designed for trajectory tracking. The controller, designed on the basis of an input-output linearized model, is applied on both the linearized as well as the nonlinear system. The results are validated through simulation on a Duffing oscillator.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4643-4648

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ott, C. Grebogi and J. A. Yorke, Controlling Chaos, Physical Review Letters, vol 64, 1990, pp.1196-1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[2] R.W. Brockett, Feedback Invartants for Nonlinear Systems, , Proceedings 7th IFAC World Congress, Helsinki, pp.1115-1120 (1978).

Google Scholar

[3] R. Su, On the Linear Equivalents of Nonlinear Systems, System Control Letters, Vol 2, p.48 (1982).

Google Scholar

[4] L. R. Hunt, R. Su, and G. Meyer Global Transformation of Nonlinear Systems, IEEE Transaction Automatic Control, AC-28, 24(1983).

Google Scholar

[5] E. Gilbert, and I. J. Ha, An Approach to Nonlinear Feedback Control with Applications to Robotics, IEEE Trans. Syst. Man. Cybern., SMC- 14 p.879 (1984).

DOI: 10.1109/tsmc.1984.6313314

Google Scholar

[6] I. J. Ha, and E. Gilbert, Robust Tracking in Nonlinear Systems and its Applications to Robotics, Proc. 24th IEEE CDC, Ft. Lauderdale, FL, 1009 (1985).

DOI: 10.1109/cdc.1985.268651

Google Scholar

[7] C. Kravaris and C. Chung, Nonlinear State Feedback Synthesis by Global Input /Output Linearization, AIChE Journal, vol 33, No 4, 1987, p.592.

DOI: 10.1002/aic.690330408

Google Scholar

[8] A. Isidori, Non-linear Control Systems, Springer-Verlag, Berlin, (1995).

Google Scholar

[9] David G. Luenberger, An Introduction To Observers, IEEE Transactions On Automatic Control, (1971), Vol. AC-16, No. 6, 596-602.

DOI: 10.1109/tac.1971.1099826

Google Scholar

[10] A. J. Krener, and A. Isidori, Linearization by Output Injection and Nonlinear Observers, , Systems and Control Letters, 3, 47-52 (1983).

DOI: 10.1016/0167-6911(83)90037-3

Google Scholar

[11] A. J. Krener, , and W. Respondek, , 1985, Nonlinear observers with linearizable error dynamics, , SIAM Journal on Control and Optimization, 23, 197-216.

DOI: 10.1137/0323016

Google Scholar

[12] Xiao-hua Xia, and Wei-bin Gao, Nonlinear observer design by observer error linearization, , SIAM Journal on Control and Optimization, vol. 27, 199-216 (1989).

DOI: 10.1137/0327011

Google Scholar

[13] G. Ciccarella, M. Dalla mora and A. Germani, A Luenberger-like observer for nonlinear systems, International Journal of Control, 1993, Vol. 57, No. 3, 537-556.

DOI: 10.1080/00207179308934406

Google Scholar

[14] P. Holmes, A Nonlinear Oscillator with a Strange Attractor, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 292, No. 1394 (Oct. 23, 1979), pp.419-448.

DOI: 10.1098/rsta.1979.0068

Google Scholar