Optimization of Fabrication Process for MEMS Based Microneedles Using ICP Etching Technology

Article Preview

Abstract:

In this paper, optimization of fabrication process for microneedles has been presented. Using inductively coupled plasma (ICP) etching technology, fabrication of out-of-plane hollow silicon microneedles for blood extraction has been carried out. Sharp tip microneedles with length 1100 µm were designed for fabrication. The fabrication of microneedles was not successful because the lumen section was fabricated first and then hole was created for fluid flow. Previously, using same fabrication method successful fabrication of microneedles was done for drug delivery with length 200 µm. This fabrication method is not suitable for long structure. Thus, the alternative microneedle fabrication steps using ICP etching have been developed and presented in this paper. These steps can be more optimized and suitable for sharp tip, long and hollow structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4611-4616

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] The World Book Encyclopedia (1999) Hypodermic injection. The world book encyclopedia. World Book Chic 9: 480–481.

Google Scholar

[2] McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2: 289–313. doi: 10. 1146/annurev. bioeng. 2. 1. 289.

DOI: 10.1146/annurev.bioeng.2.1.289

Google Scholar

[3] S. Hashmi, Genetic transformation of nematodes using arrays of micromechanical piercing structures, BioTechniques 19, pp, 766–770, (1995).

Google Scholar

[4] M. W. Ashraf, S. Tayyaba, A. Nisar, N. Afzulpurkar, D. W. Bodhale, T. Lomas, A. Poyai, and A. Tuantranont, Design, Fabrication and Analysis of Silicon Hollow Microneedles for Transdermal Drug Delivery System for Treatment of Hemodynamic Dysfunctions, Cardiovascular Engineering Journal, Volume 10, Number 3, pp.91-108.

DOI: 10.1007/s10558-010-9100-5

Google Scholar

[5] T. Shibata, A. Nakanishi, T. Sakai, N. Kato, T. Kawashima, T. Mineta, and E. Makino, Fabrication and mechanical characterization of microneedle array for for cell surgery, In: Actuators and Microsystems Conference, p.719–722.

DOI: 10.1109/sensor.2007.4300231

Google Scholar

[6] S. Khumpuang1, M. Horade, K. Fujioka, and S. Sugiyama, Geometrical Strengthening and tip-sharping of a microneedle array fabricated by X-ray lithography, Microsist Technol. 13, pp.209-214.

DOI: 10.1007/s00542-006-0173-4

Google Scholar

[7] L. M. Yu, F. E. H. Tay, D. G. Guo, L. Xu, K. L. Yap, A microfabricated electrode with hollow microneedles for ECG measurements, Sens Actuator A 151, 2009, p.151: 17-22.

DOI: 10.1016/j.sna.2009.01.020

Google Scholar

[8] JW. Lee, JH. Park, MR. Prausnitz, Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2009, pp.2113-2124.

DOI: 10.1016/j.biomaterials.2007.12.048

Google Scholar

[9] P. Zhang , C. Dalton, and G. A. Jullien, Design and fabrication of MEMS-based microneedles arrays for medical applications, Microsyst Technol 15, 2009, pp.1073-1082.

DOI: 10.1007/s00542-009-0883-5

Google Scholar

[10] Z. Ding, F. J. Verbaan, M. Bivas-Benita, L. Bungener, A. Huckriede, D. J. van den Berg, G. Kersten, J. A. Bouwstra, Microneedles arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 136, 2009, pp.71-78.

DOI: 10.1016/j.jconrel.2009.01.025

Google Scholar

[11] S. P. Davis, W. Martanto, M. G. Allen, and M. R. Prausnitz, Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52(5), p.909–915.

DOI: 10.1109/tbme.2005.845240

Google Scholar

[12] J. Oh , H. Park, K. Doa, M. Han, D. Hyun, C. Kim, C. Kim, S. S. Lee, S. Hwang, S. Shin, C. Cho, Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein, Eur. J. Pharm. Biopharm 69, 2009, pp.1040-1045.

DOI: 10.1016/j.ejpb.2008.02.009

Google Scholar

[13] M. W. Ashraf, S. Tayyaba, N. Afzulpurkar, MEMS based Polymeric Drug Delivery System, CASE 2010, 6th IEEE Conference on Automation Science and Engineering, August 21- 24, 2010, Toronto, Canada.

DOI: 10.1109/coase.2010.5583941

Google Scholar

[14] R. Bhandari, S. Negi, L. Rieth, R. A. Norman, and F. Solzbacher, A Novel Mask-Less Method of Fabricating High Aspect Ratio Microneedles for Blood Sampling, In: IEEE, 2008 Electronic Components and Technology Conference 1306-1309.

DOI: 10.1109/ectc.2008.4550144

Google Scholar

[15] S. Rajaraman, and H. T. Henderson, A unique fabrication approach for microneedles using coherent porous silicon technology, Sens. Actuator B 105, pp.443-448.

DOI: 10.1016/j.snb.2004.06.035

Google Scholar

[16] F. Sammoura, J. Kang, Y. Heo, T. Jung and L. Lin, Polymeric microneedle fabrication using a microinjection molding technique, Microsyst Techno. 13, pp.517-522.

DOI: 10.1007/s00542-006-0204-1

Google Scholar

[17] J. Jiang, J. S. Moore, H. F. Edelhauser, and M. R. Prausnitz, Intrascleral Drug Delivery to the Eye Using Hollow Microneedles. Pharm. Res. 26: 395-403.

DOI: 10.1007/s11095-008-9756-3

Google Scholar

[18] H.J.G.E. Gardeniers, R. Luttge, E.J.W. Berenschot, M.J. Boer, S.Y. Yeshurun, M. Hefetz, R. V Oever and A. VD. Berg, Silicon micromachined hollow microneedles for transdermal liquid transport, J. Microelectromech. Syst. Vol 12, 855-862, (2003).

DOI: 10.1109/jmems.2003.820293

Google Scholar

[19] B. Stoeber and D. Liepman, Two-dimensional arrays of out-of-plane needles , Proc. ASME int. Mechanical Engineering Congr. and Exposition, 355-359, (2000).

Google Scholar

[20] P. Griss and G. Stemme, Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer, J. Microelectromech. Syst. Vol 12, 296-301, (2003).

DOI: 10.1109/jmems.2003.809959

Google Scholar

[21] J. Ji and J. Miao, Microfabricated Hollow Microneedle Array Using ICP Etcher, Journal of Physics, Conference Series 34, p.1132–1136, 2006, doi: 10. 1088/1742-6596/34/1/187.

DOI: 10.1088/1742-6596/34/1/187

Google Scholar