An Auto-Tuning PID Controller for Integrating Plus Dead-Time Processes

Article Preview

Abstract:

We propose an auto-tuning PID (APID) controller with nonlinear gain. Its proportional, integral, and derivative gains are parameterized online by a nonlinear updating factor. Both performance and stability robustness of APID are studied with reasonable perturbations in model as well as controller parameters. Effectiveness of the proposed APID is tested through simulation study as well as its real-time implementation on a practical position control system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4934-4943

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. J. Astrom and T. Hagglund, Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control, Vol. 14, No. 6, pp.635-650, (2004).

DOI: 10.1016/j.jprocont.2004.01.002

Google Scholar

[2] C. Dey and R.K. Mudi, An improved auto-tuning scheme for PID controllers, ISA Transactions, Vol. 48, No. 4, pp.396-409, (2009).

DOI: 10.1016/j.isatra.2009.07.002

Google Scholar

[3] A. Ali and S. Majhi, PID controller tuning for integrating processes, ISA Transactions, Vol. 49, No. 1, pp.70-78, (2010).

DOI: 10.1016/j.isatra.2009.09.001

Google Scholar

[4] B. C. Hang, K. J. Astrom, and W. K. Ho, Refinements of Ziegler-Nichols tuning formula, IEE Proc. -D, Vol. 138, No. 2, pp.111-118, (1991).

DOI: 10.1049/ip-d.1991.0015

Google Scholar

[5] K. J. Astrom, C. C. Hang, P. Persson, and W. K. Ho, Towards intelligent PID control, Automatica, Vol. 28, No. 1, pp.1-9, (1992).

DOI: 10.1016/0005-1098(92)90002-w

Google Scholar

[6] L. Chien and P. S. Fruehauf, Consider IMC Tuning to Improve Controller Performance, Chemical Engineering Progress, Vol. 86, No. 10, pp.33-41, (1990).

Google Scholar

[7] W. L. Luyben, Tuning Proportional-Integral-Derivative Controllers for Integrator/Deadtime Processes, Industrial & Engineering Chemistry Research, Vol. 35, No. 10, pp.3480-3483, (1996).

DOI: 10.1021/ie9600699

Google Scholar

[8] Y. G. Wang and W. J. Cai, Advanced proportional-integral-derivative tuning for integrating and unstable process with gain and phase margin specifications, Industrial & Engineering Chemistry Research, Vol. 41, No. 12, pp.2910-2914, (2002).

DOI: 10.1021/ie000739h

Google Scholar

[9] M. Chidambaram and R. Padma Sree, A simple method of tuning PID controllers for integrator/dead-time processes, Computers and Chemical Engineering, Vol. 27, No. 2, pp.211-215, (2003).

DOI: 10.1016/s0098-1354(02)00178-3

Google Scholar

[10] S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, Journal of Process Control, Vol. 13, No. 4, pp.291-309, (2003).

DOI: 10.1016/s0959-1524(02)00062-8

Google Scholar

[11] W. Zhang, Xu. Y, and Y. Sun, Quantitative performance design for integrating processes with time-delay, Automatica, Vol. 35, No. 4, pp.719-723, (1999).

DOI: 10.1016/s0005-1098(98)00207-6

Google Scholar

[12] G. Ziegler and N. B. Nichols, Optimum setting for automatic controllers, ASME Transaction, Vol. 64, No. 11, pp.759-768, (1942).

Google Scholar

[13] Wang and W. R. Cluett, Tuning of PID controllers for integrating processes, IEE Proc. - Control Theory Applications, Vol. 144, No. 5, pp.385-392, (1997).

DOI: 10.1049/ip-cta:19971435

Google Scholar

[14] Md. Shamsuzzoha and M. Lee, PID controller design for integrating processes with time-delay, Korean Journal of Chemical Engineering, Vol. 25, No. 4, pp.637-645, (2008).

DOI: 10.1007/s11814-008-0106-2

Google Scholar

[15] W. Tan, K. Liu, and P. K. S. Tam, PID tuning based on loop shaping H∞ control, IEE Proc. - Control Theory Applications, Vol. 145, No. 6, pp.485-490, (1998).

DOI: 10.1049/ip-cta:19982407

Google Scholar

[16] E. Poulin and A. Pomerleau, PID tuning for integrating and unstable processes, IEE Proc. - Control Theory Applications, Vol. 143, No. 5, pp.429-435, (1996).

DOI: 10.1049/ip-cta:19960442

Google Scholar

[17] A. Visioli, Optimal tuning of PID controllers for integral and unstable processes, IEE Proc. - Control Theory Applications, Vol. 148, No. 2, pp.180-184, (2001).

DOI: 10.1049/ip-cta:20010197

Google Scholar

[18] S. Rao, V. S. R Rao, and M. Chidambaram, Direct synthesis-based controller design for integrating processes with time-delay, Journal of the Franklin Institute, Vol. 346, No. 1, pp.38-56, (2009).

DOI: 10.1016/j.jfranklin.2008.06.004

Google Scholar

[19] Documentation for the Feedback Digital Servo Workshop (Model: 33-004), Feedback Instruments Limited, East Sussex, England, (2006).

Google Scholar

[20] R. Barmish, New Tools for Robustness in Linear systems, McMillan, New York, (1994).

Google Scholar