[1]
K. J. Astrom and T. Hagglund, Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control, Vol. 14, No. 6, pp.635-650, (2004).
DOI: 10.1016/j.jprocont.2004.01.002
Google Scholar
[2]
C. Dey and R.K. Mudi, An improved auto-tuning scheme for PID controllers, ISA Transactions, Vol. 48, No. 4, pp.396-409, (2009).
DOI: 10.1016/j.isatra.2009.07.002
Google Scholar
[3]
A. Ali and S. Majhi, PID controller tuning for integrating processes, ISA Transactions, Vol. 49, No. 1, pp.70-78, (2010).
DOI: 10.1016/j.isatra.2009.09.001
Google Scholar
[4]
B. C. Hang, K. J. Astrom, and W. K. Ho, Refinements of Ziegler-Nichols tuning formula, IEE Proc. -D, Vol. 138, No. 2, pp.111-118, (1991).
DOI: 10.1049/ip-d.1991.0015
Google Scholar
[5]
K. J. Astrom, C. C. Hang, P. Persson, and W. K. Ho, Towards intelligent PID control, Automatica, Vol. 28, No. 1, pp.1-9, (1992).
DOI: 10.1016/0005-1098(92)90002-w
Google Scholar
[6]
L. Chien and P. S. Fruehauf, Consider IMC Tuning to Improve Controller Performance, Chemical Engineering Progress, Vol. 86, No. 10, pp.33-41, (1990).
Google Scholar
[7]
W. L. Luyben, Tuning Proportional-Integral-Derivative Controllers for Integrator/Deadtime Processes, Industrial & Engineering Chemistry Research, Vol. 35, No. 10, pp.3480-3483, (1996).
DOI: 10.1021/ie9600699
Google Scholar
[8]
Y. G. Wang and W. J. Cai, Advanced proportional-integral-derivative tuning for integrating and unstable process with gain and phase margin specifications, Industrial & Engineering Chemistry Research, Vol. 41, No. 12, pp.2910-2914, (2002).
DOI: 10.1021/ie000739h
Google Scholar
[9]
M. Chidambaram and R. Padma Sree, A simple method of tuning PID controllers for integrator/dead-time processes, Computers and Chemical Engineering, Vol. 27, No. 2, pp.211-215, (2003).
DOI: 10.1016/s0098-1354(02)00178-3
Google Scholar
[10]
S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, Journal of Process Control, Vol. 13, No. 4, pp.291-309, (2003).
DOI: 10.1016/s0959-1524(02)00062-8
Google Scholar
[11]
W. Zhang, Xu. Y, and Y. Sun, Quantitative performance design for integrating processes with time-delay, Automatica, Vol. 35, No. 4, pp.719-723, (1999).
DOI: 10.1016/s0005-1098(98)00207-6
Google Scholar
[12]
G. Ziegler and N. B. Nichols, Optimum setting for automatic controllers, ASME Transaction, Vol. 64, No. 11, pp.759-768, (1942).
Google Scholar
[13]
Wang and W. R. Cluett, Tuning of PID controllers for integrating processes, IEE Proc. - Control Theory Applications, Vol. 144, No. 5, pp.385-392, (1997).
DOI: 10.1049/ip-cta:19971435
Google Scholar
[14]
Md. Shamsuzzoha and M. Lee, PID controller design for integrating processes with time-delay, Korean Journal of Chemical Engineering, Vol. 25, No. 4, pp.637-645, (2008).
DOI: 10.1007/s11814-008-0106-2
Google Scholar
[15]
W. Tan, K. Liu, and P. K. S. Tam, PID tuning based on loop shaping H∞ control, IEE Proc. - Control Theory Applications, Vol. 145, No. 6, pp.485-490, (1998).
DOI: 10.1049/ip-cta:19982407
Google Scholar
[16]
E. Poulin and A. Pomerleau, PID tuning for integrating and unstable processes, IEE Proc. - Control Theory Applications, Vol. 143, No. 5, pp.429-435, (1996).
DOI: 10.1049/ip-cta:19960442
Google Scholar
[17]
A. Visioli, Optimal tuning of PID controllers for integral and unstable processes, IEE Proc. - Control Theory Applications, Vol. 148, No. 2, pp.180-184, (2001).
DOI: 10.1049/ip-cta:20010197
Google Scholar
[18]
S. Rao, V. S. R Rao, and M. Chidambaram, Direct synthesis-based controller design for integrating processes with time-delay, Journal of the Franklin Institute, Vol. 346, No. 1, pp.38-56, (2009).
DOI: 10.1016/j.jfranklin.2008.06.004
Google Scholar
[19]
Documentation for the Feedback Digital Servo Workshop (Model: 33-004), Feedback Instruments Limited, East Sussex, England, (2006).
Google Scholar
[20]
R. Barmish, New Tools for Robustness in Linear systems, McMillan, New York, (1994).
Google Scholar