Thermal Lattice Boltzmann Simulation of Rarefied Gas Flows in Nanochannels for Wide Range of Knudsen Number

Article Preview

Abstract:

Using a modified Lattice Boltzmann Method (LBM), developing thermal flow through micro and nano channels has been modeled. Based on the improving of the dynamic viscosity and thermal conductivity, an effective relaxation time formulation is proposed which is able to simulate wide range of Knudsen numbers, Kn,. The results show that in spite of the standard LBM, the temperature distributions and the local Nusselt number obtained from this modified thermal LBM, agree well with the other numerical and empirical results in a wide range of Knudsen numbers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

5313-5317

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows fundamentals and simulation, Springer Inc., USA. (2005).

Google Scholar

[2] X. Shan, X. -F. Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond Navier-Stokes equation, J. Fluid Mechanics. 550 (2006) 413-441.

DOI: 10.1017/s0022112005008153

Google Scholar

[3] S.S. Chikatamarla, I.V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett. 97 (2006) 190601.

DOI: 10.1103/physrevlett.97.190601

Google Scholar

[4] S. Ansumali, I.V. Karlin, S. Arcidiacono, A. Abbas, N.I. Prasianakis, Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett. 98 (2007) 124502.

DOI: 10.1103/physrevlett.98.124502

Google Scholar

[5] S.H. Kim, H.P. Pitsch, I.D. Boyd, Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. computational Physics, 227 (2008) 8655-8671.

DOI: 10.1016/j.jcp.2008.06.012

Google Scholar

[6] Y.H. Zhang, X.J. Gu, R.W. Barber, D.R. Emerson, Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E. 74 (2006) 046704.

DOI: 10.1103/physreve.74.046704

Google Scholar

[7] G.H. Tang, Y.H. Zhang, D.R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E. 77 (2008) 046701.

DOI: 10.1103/physreve.77.046701

Google Scholar

[8] G.H. Tang, Y.H. Zhang, X.J. Gu, D.R. Emerson, Lattice Boltzmann modeling Knudsen layer effect in non-equilibrium flows, EPL, 83 (2008) 40008.

DOI: 10.1209/0295-5075/83/40008

Google Scholar

[9] S. Succi, I.V. Karlin, H. Chen, Role of the H theorem in lattice Boltzmann hydrodynamic simulations, Rev. Mod. Phys. 74, (2002) 1203.

DOI: 10.1103/revmodphys.74.1203

Google Scholar

[10] Y. Peng, Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics, PhD Thesis, University of Pittsburgh (2005).

Google Scholar

[11] C. Cercignani, The Boltzmann Equations and its Applications, Springer-Verlag, New York (1988).

Google Scholar

[12] X.Y. He, S.Y. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 (1998) 282-300.

DOI: 10.1006/jcph.1998.6057

Google Scholar

[13] S. Succi, The lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press (2001).

Google Scholar

[14] A. Homayoon, A.H. Meghdadi Isfahani, E. Shirani, M. Ashrafizadeh, A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number, int. communications heat mass transfer, article in press (2011).

DOI: 10.1016/j.icheatmasstransfer.2011.03.007

Google Scholar

[15] W.G. Polard, R.D. Present, On gaseous self-diffusion in long capillary tubes, Phys. Rev. 73 (7), (1948) 762-774.

DOI: 10.1103/physrev.73.762

Google Scholar

[16] X.D. Niu, Y.T. Chew, C. Shu, A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 2004; 67(4); 600.

DOI: 10.1209/epl/i2003-10307-8

Google Scholar

[17] X.D. Niu, C. Shu, Y.T. Chew, A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows, computer & fluids, 36 (2007) 273-281.

DOI: 10.1016/j.compfluid.2005.11.007

Google Scholar

[18] N.G. Hadjiconstantinou, O. Simek, Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels, J. heat transfer, 124, (2002), 356-364.

DOI: 10.1115/1.1447931

Google Scholar

[19] H.P. Kavehpour, M. Faghri, Y. Asako, Effect of compressibility and rarefaction on gaseous flows in microchannels, J. numerical heat transfer A, 32: 677-696, (1997).

DOI: 10.1080/10407789708913912

Google Scholar