[1]
G. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows fundamentals and simulation, Springer Inc., USA. (2005).
Google Scholar
[2]
X. Shan, X. -F. Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond Navier-Stokes equation, J. Fluid Mechanics. 550 (2006) 413-441.
DOI: 10.1017/s0022112005008153
Google Scholar
[3]
S.S. Chikatamarla, I.V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett. 97 (2006) 190601.
DOI: 10.1103/physrevlett.97.190601
Google Scholar
[4]
S. Ansumali, I.V. Karlin, S. Arcidiacono, A. Abbas, N.I. Prasianakis, Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett. 98 (2007) 124502.
DOI: 10.1103/physrevlett.98.124502
Google Scholar
[5]
S.H. Kim, H.P. Pitsch, I.D. Boyd, Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. computational Physics, 227 (2008) 8655-8671.
DOI: 10.1016/j.jcp.2008.06.012
Google Scholar
[6]
Y.H. Zhang, X.J. Gu, R.W. Barber, D.R. Emerson, Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E. 74 (2006) 046704.
DOI: 10.1103/physreve.74.046704
Google Scholar
[7]
G.H. Tang, Y.H. Zhang, D.R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E. 77 (2008) 046701.
DOI: 10.1103/physreve.77.046701
Google Scholar
[8]
G.H. Tang, Y.H. Zhang, X.J. Gu, D.R. Emerson, Lattice Boltzmann modeling Knudsen layer effect in non-equilibrium flows, EPL, 83 (2008) 40008.
DOI: 10.1209/0295-5075/83/40008
Google Scholar
[9]
S. Succi, I.V. Karlin, H. Chen, Role of the H theorem in lattice Boltzmann hydrodynamic simulations, Rev. Mod. Phys. 74, (2002) 1203.
DOI: 10.1103/revmodphys.74.1203
Google Scholar
[10]
Y. Peng, Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics, PhD Thesis, University of Pittsburgh (2005).
Google Scholar
[11]
C. Cercignani, The Boltzmann Equations and its Applications, Springer-Verlag, New York (1988).
Google Scholar
[12]
X.Y. He, S.Y. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 (1998) 282-300.
DOI: 10.1006/jcph.1998.6057
Google Scholar
[13]
S. Succi, The lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press (2001).
Google Scholar
[14]
A. Homayoon, A.H. Meghdadi Isfahani, E. Shirani, M. Ashrafizadeh, A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number, int. communications heat mass transfer, article in press (2011).
DOI: 10.1016/j.icheatmasstransfer.2011.03.007
Google Scholar
[15]
W.G. Polard, R.D. Present, On gaseous self-diffusion in long capillary tubes, Phys. Rev. 73 (7), (1948) 762-774.
DOI: 10.1103/physrev.73.762
Google Scholar
[16]
X.D. Niu, Y.T. Chew, C. Shu, A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 2004; 67(4); 600.
DOI: 10.1209/epl/i2003-10307-8
Google Scholar
[17]
X.D. Niu, C. Shu, Y.T. Chew, A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows, computer & fluids, 36 (2007) 273-281.
DOI: 10.1016/j.compfluid.2005.11.007
Google Scholar
[18]
N.G. Hadjiconstantinou, O. Simek, Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels, J. heat transfer, 124, (2002), 356-364.
DOI: 10.1115/1.1447931
Google Scholar
[19]
H.P. Kavehpour, M. Faghri, Y. Asako, Effect of compressibility and rarefaction on gaseous flows in microchannels, J. numerical heat transfer A, 32: 677-696, (1997).
DOI: 10.1080/10407789708913912
Google Scholar