[1]
E.B. Arkilic, K.S. Breuer, M.A Schmidt, Gaseous flow in microchannels, ASME Winter Annual Meeting. (1994), 57–65.
Google Scholar
[2]
G.A. Bird, Molecular gas dynamics and the direct simulation of gas flow, Oxford University Press, (1994), New York.
Google Scholar
[3]
W. Wagner, A convergence proof for Birds direct simulation Monte Carlo method for the Boltzmann equation, J. stat. Phys. 66 (1992) 1011-1044.
DOI: 10.1007/bf01055714
Google Scholar
[4]
C. Shen, D.B. Tian, C. Xie, J. Fan, Examination of the LBM in simulation of microchannel flow in transitional regime, Microscale Thermophys. Eng. 8 (4) (2004) 423-432
DOI: 10.1080/10893950490516983
Google Scholar
[5]
M. Gad-el-Hak, The fluid mechanics of microdevices, J. Fluid Eng., 12(1) (1999) 5-33
Google Scholar
[6]
M Sbragaglia,S. Succi, Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, J. Phys. Fluids, 17, 093602 (2005).
DOI: 10.1063/1.2044829
Google Scholar
[7]
X. Shan, X.-F. Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond Navier-Stokes equation, J. Fluid Mechanics. 550 (2006) 413-441.
DOI: 10.1017/s0022112005008153
Google Scholar
[8]
S.S. Chikatamarla, I.V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett. 97 (2006) 190601.
DOI: 10.1103/physrevlett.97.190601
Google Scholar
[9]
S. Ansumali, I.V. Karlin, S. Arcidiacono, A. Abbas, N.I. Prasianakis, Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett. 98 (2007) 124502.
DOI: 10.1103/physrevlett.98.124502
Google Scholar
[10]
S.H. Kim, H.P. Pitsch, I.D. Boyd, Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. computational Physics, 227 (2008) 8655-8671
DOI: 10.1016/j.jcp.2008.06.012
Google Scholar
[11]
Y.H. Zhang, X.J. Gu, R.W. Barber, D.R. Emerson, Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E. 74 (2006) 046704.
DOI: 10.1103/physreve.74.046704
Google Scholar
[12]
G.H. Tang, Y.H. Zhang, D.R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E. 77 (2008) 046701.
DOI: 10.1103/physreve.77.046701
Google Scholar
[13]
G.H. Tang, Y.H. Zhang, X.J. Gu, D.R. Emerson, Lattice Boltzmann modeling Knudsen layer effect in non-equilibrium flows, EPL, 83 (2008) 40008.
DOI: 10.1209/0295-5075/83/40008
Google Scholar
[14]
S. Succi, I.V. Karlin, H. Chen, Rev. Mod. Phys. 74, 1203 (2002).
Google Scholar
[15]
Y. Peng, Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics, PhD Thesis, University of Pittsburgh (2005).
Google Scholar
[16]
C. Cercignani, The Boltzmann Equations and its Applications, Springer-Verlag, New York (1988).
Google Scholar
[17]
R.K. Pathria, Statistical Mechanics, 2nd ed., Butterworth-Heinemann, (1996).
Google Scholar
[18]
P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases, J. Phys. Rev., 94, (1954), 511-525.
DOI: 10.1103/physrev.94.511
Google Scholar
[19]
B. Li, D.K. wok, Lattice Boltzmann model of microfluidics with high Reynolds numbers in the presence of external forces. Phys. Rev. Lett. 90, 124502 (2003).
Google Scholar
[20]
S. Succi, The lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press (2001).
Google Scholar
[21]
S. Succi, Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, J. Phys. Rev. Lett. 89, 064502 (2002).
DOI: 10.1103/physrevlett.89.064502
Google Scholar
[22]
T. Ohwada, Y. Sone, K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard sphere molecules, Phys. Fluids A, 1 (12) (1989) 2042-2049.
DOI: 10.1063/1.857478
Google Scholar
[23]
G. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows fundamentals and simulation, Springer Inc., USA. 2005.
Google Scholar
[24]
S.L. Thompson, W.R. Owens, A survey of flow at low pressures. Vacuum, 25 (1975) 151–156.
Google Scholar
[25]
X. Nie, D. Doolen, S. Chen, Lattice-Boltzmann simulations of fluid flows in MEMS, J. Statistical Phys, Vol. 107, Nos. 1/2 (2002).
Google Scholar
[26]
S. Succi, R. Benzi, L. Biferale, M. Sbragaglia, F. Toschi, Lattice kinetic theory as a form of supra-molecular dynamics for computational microfluidics, Academy of Sciences Technical sciences, Vol. 55, No. 2 (2007).
Google Scholar
[27]
T. Kanki, S. Iuchi, Poiseuille flow and thermal creep of a rarefied gas between parallel plates, J. Phys. Fluids 16 (5) (1973) 594–599.
DOI: 10.1063/1.1694393
Google Scholar
[28]
C. Cercignani, M. Lampis, S. Lorenzani, Variational approach to gas flows in microchannels, J. Phys. Fluid, 16 (2004) 3426–3437.
DOI: 10.1063/1.1764700
Google Scholar
[29]
M. Knudsen, Die Gesetze der molecular stromung und dieinneren Reibungstromung der gase durchrohren, Ann. Phys., Vol. 28 (1909) 75-130.
DOI: 10.1002/andp.19093330106
Google Scholar