Simulation of High Knudsen Number Gas Flows in Nanochannels via the Lattice Boltzmann Method

Article Preview

Abstract:

Using a modified Lattice Boltzmann Method (LBM), pressure driven flow through micro and nano channels has been modeled. Based on the improving of the dynamic viscosity, an effective relaxation time formulation is proposed which is able to simulate wide range of Knudsen number, Kn, covering the slip, transition and to some extend the free molecular regimes. The results agree very well with exiting empirical and numerical data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

5318-5323

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.B. Arkilic, K.S. Breuer, M.A Schmidt, Gaseous flow in microchannels, ASME Winter Annual Meeting. (1994), 57–65.

Google Scholar

[2] G.A. Bird, Molecular gas dynamics and the direct simulation of gas flow, Oxford University Press, (1994), New York.

Google Scholar

[3] W. Wagner, A convergence proof for Birds direct simulation Monte Carlo method for the Boltzmann equation, J. stat. Phys. 66 (1992) 1011-1044.

DOI: 10.1007/bf01055714

Google Scholar

[4] C. Shen, D.B. Tian, C. Xie, J. Fan, Examination of the LBM in simulation of microchannel flow in transitional regime, Microscale Thermophys. Eng. 8 (4) (2004) 423-432

DOI: 10.1080/10893950490516983

Google Scholar

[5] M. Gad-el-Hak, The fluid mechanics of microdevices, J. Fluid Eng., 12(1) (1999) 5-33

Google Scholar

[6] M Sbragaglia,S. Succi, Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, J. Phys. Fluids, 17, 093602 (2005).

DOI: 10.1063/1.2044829

Google Scholar

[7] X. Shan, X.-F. Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond Navier-Stokes equation, J. Fluid Mechanics. 550 (2006) 413-441.

DOI: 10.1017/s0022112005008153

Google Scholar

[8] S.S. Chikatamarla, I.V. Karlin, Entropy and Galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett. 97 (2006) 190601.

DOI: 10.1103/physrevlett.97.190601

Google Scholar

[9] S. Ansumali, I.V. Karlin, S. Arcidiacono, A. Abbas, N.I. Prasianakis, Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett. 98 (2007) 124502.

DOI: 10.1103/physrevlett.98.124502

Google Scholar

[10] S.H. Kim, H.P. Pitsch, I.D. Boyd, Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers, J. computational Physics, 227 (2008) 8655-8671

DOI: 10.1016/j.jcp.2008.06.012

Google Scholar

[11] Y.H. Zhang, X.J. Gu, R.W. Barber, D.R. Emerson, Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E. 74 (2006) 046704.

DOI: 10.1103/physreve.74.046704

Google Scholar

[12] G.H. Tang, Y.H. Zhang, D.R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E. 77 (2008) 046701.

DOI: 10.1103/physreve.77.046701

Google Scholar

[13] G.H. Tang, Y.H. Zhang, X.J. Gu, D.R. Emerson, Lattice Boltzmann modeling Knudsen layer effect in non-equilibrium flows, EPL, 83 (2008) 40008.

DOI: 10.1209/0295-5075/83/40008

Google Scholar

[14] S. Succi, I.V. Karlin, H. Chen, Rev. Mod. Phys. 74, 1203 (2002).

Google Scholar

[15] Y. Peng, Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics, PhD Thesis, University of Pittsburgh (2005).

Google Scholar

[16] C. Cercignani, The Boltzmann Equations and its Applications, Springer-Verlag, New York (1988).

Google Scholar

[17] R.K. Pathria, Statistical Mechanics, 2nd ed., Butterworth-Heinemann, (1996).

Google Scholar

[18] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases, J. Phys. Rev., 94, (1954), 511-525.

DOI: 10.1103/physrev.94.511

Google Scholar

[19] B. Li, D.K. wok, Lattice Boltzmann model of microfluidics with high Reynolds numbers in the presence of external forces. Phys. Rev. Lett. 90, 124502 (2003).

Google Scholar

[20] S. Succi, The lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press (2001).

Google Scholar

[21] S. Succi, Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, J. Phys. Rev. Lett. 89, 064502 (2002).

DOI: 10.1103/physrevlett.89.064502

Google Scholar

[22] T. Ohwada, Y. Sone, K. Aoki, Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard sphere molecules, Phys. Fluids A, 1 (12) (1989) 2042-2049.

DOI: 10.1063/1.857478

Google Scholar

[23] G. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows fundamentals and simulation, Springer Inc., USA. 2005.

Google Scholar

[24] S.L. Thompson, W.R. Owens, A survey of flow at low pressures. Vacuum, 25 (1975) 151–156.

Google Scholar

[25] X. Nie, D. Doolen, S. Chen, Lattice-Boltzmann simulations of fluid flows in MEMS, J. Statistical Phys, Vol. 107, Nos. 1/2 (2002).

Google Scholar

[26] S. Succi, R. Benzi, L. Biferale, M. Sbragaglia, F. Toschi, Lattice kinetic theory as a form of supra-molecular dynamics for computational microfluidics, Academy of Sciences Technical sciences, Vol. 55, No. 2 (2007).

Google Scholar

[27] T. Kanki, S. Iuchi, Poiseuille flow and thermal creep of a rarefied gas between parallel plates, J. Phys. Fluids 16 (5) (1973) 594–599.

DOI: 10.1063/1.1694393

Google Scholar

[28] C. Cercignani, M. Lampis, S. Lorenzani, Variational approach to gas flows in microchannels, J. Phys. Fluid, 16 (2004) 3426–3437.

DOI: 10.1063/1.1764700

Google Scholar

[29] M. Knudsen, Die Gesetze der molecular stromung und dieinneren Reibungstromung der gase durchrohren, Ann. Phys., Vol. 28 (1909) 75-130.

DOI: 10.1002/andp.19093330106

Google Scholar