p.205
p.209
p.215
p.223
p.231
p.237
p.243
p.249
p.257
Role of Delamination Fracture for Enhanced Impact Toughness in 0.05 %P Doped High Strength Steel with Ultrafine Elongated Grain Structure
Abstract:
Ultrafine elongated grain (UFEG) structures with strong <110>// rolling direction (RD) fiber deformation texture were produced by warm caliber-rolling at 773 K, namely tempforming in the 1200 MPa-class medium-carbon low-alloy steel with phosphorous (P) contents of 0.001 and 0.053 mass%. Charpy impact tests were performed at temperature range of-196 to 150 °C on the UFEG structure. Regardless of P content, high upper shelf energy about 145 J and a very low ductile to brittle transition temperature (DBTT) of around-175 °C were obtained. P segregation embrittlement completely disappeared in the 0.053 %P steel and both steels showed ductile fracture on the planes normal to RD at temperature range of-150 to 150 °C. The main reason for the high upper shelf energy and very low DBTT in the 0.053 %P steel would be delamination fracture along RD when both 0.001 and 0.053 %P steels showed quite similar microstructures including texture. Since the occurrence of delamination requires relatively weak interfaces or planes, P segregated to the ferrite grain boundaries and interfaces of cementite particles-ferrite matrix and made them feasible paths for crack branching and consequently delamination occurred. We showed in this work the advantage of delamination (crack arrester-type) on the high absorbed energy obtained by 0.053 %P steel in comparison with 0.001 %P steel.
Info:
Periodical:
Pages:
231-236
Citation:
Online since:
November 2011
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: