Role of Delamination Fracture for Enhanced Impact Toughness in 0.05 %P Doped High Strength Steel with Ultrafine Elongated Grain Structure

Article Preview

Abstract:

Ultrafine elongated grain (UFEG) structures with strong <110>// rolling direction (RD) fiber deformation texture were produced by warm caliber-rolling at 773 K, namely tempforming in the 1200 MPa-class medium-carbon low-alloy steel with phosphorous (P) contents of 0.001 and 0.053 mass%. Charpy impact tests were performed at temperature range of-196 to 150 °C on the UFEG structure. Regardless of P content, high upper shelf energy about 145 J and a very low ductile to brittle transition temperature (DBTT) of around-175 °C were obtained. P segregation embrittlement completely disappeared in the 0.053 %P steel and both steels showed ductile fracture on the planes normal to RD at temperature range of-150 to 150 °C. The main reason for the high upper shelf energy and very low DBTT in the 0.053 %P steel would be delamination fracture along RD when both 0.001 and 0.053 %P steels showed quite similar microstructures including texture. Since the occurrence of delamination requires relatively weak interfaces or planes, P segregated to the ferrite grain boundaries and interfaces of cementite particles-ferrite matrix and made them feasible paths for crack branching and consequently delamination occurred. We showed in this work the advantage of delamination (crack arrester-type) on the high absorbed energy obtained by 0.053 %P steel in comparison with 0.001 %P steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-236

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kameda, Y. Nishiyama, Mater. Sci. Eng. A (2011), doi: 10. 1016/j. msea. 2011. 01. 018.

Google Scholar

[2] S. H. Song, J. Wu, L. Q. Weng and Z. X. Yuan: Mater. Sci. Eng. A Vol. 497 (2008), p.524.

Google Scholar

[3] R. A. Mulford, C. J. McMahon, D. P. Pope and H. C. Feng: Metal. Trans. A Vol. 7A (1976), p.183.

Google Scholar

[4] M. Mackenbrock and H. J. Grabke: Mater. Sci. Tech. Vol. 8 (1992), p.541.

Google Scholar

[5] H. Ohtani and C. J. McMahon Jr.: Acta Metal. Vol. 23 (1976), p.377.

Google Scholar

[6] Y. Kimura, T. Inoue, F. Yin, O. Sitdikov and K. Tsuzaki: Scr. Mater. Vol. 57 (2007), p.465.

Google Scholar

[7] Y. Kimura, T. Inoue, F. Yin and K. Tsuzaki: Science Vol. 320 (2008) p.1057.

Google Scholar

[8] Y. Kimura, T. Inoue, F. Yin and K. Tsuzaki: ISIJ Int. Vol. 50 (2010), p.152.

Google Scholar

[9] T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki and S. Ochiai: Metall. Mater. Trans. A Vol. 41A (2009), p.341.

Google Scholar

[10] R. Song, D. Ponge and D. Raabe: Acta Mater. Vol. 53 (2005), p.4881.

Google Scholar

[11] P. Shanmugam and S. D. Pathak: Eng. Fract. Mech. Vol. 53 (1996), p.991.

Google Scholar

[12] W. Zhou and N. L. Loh: Scr. Mater. Vol. 34 (1996), p.633.

Google Scholar

[13] R. Song, D. Ponge and D. Raabe, J. G. Speer and D. K. Matlock: Mater. Sci. Eng. A Vol. 441 (2006), p.1.

Google Scholar

[14] D. W. Kum, T. Oyama, J. Wadsworth and O. D. Sherby: J. Mech. Phys. Vol. 31 (1983), p.173.

Google Scholar

[15] S. Ochiai and K. Osamura: J. Mater. Sci. Vol. 23 (1988), p.886.

Google Scholar

[16] S.P. Joshi and C.T. Sun: J. Comp. Mater. Vol. 19 (1985), p.51.

Google Scholar

[17] S. I. Wright and D. P. Field: Mater. Sci. Eng. A, Vol. 257 (1998), p.165.

Google Scholar

[18] M. Jafari, Y. Kimura, Y. Nie, and K. Tsuzaki: ISIJ Inter., Vol. 50 (2010), pp.1660-1665.

Google Scholar

[19] G. Krauss: Mater. Sci. Eng. A Vol. 273 (1999), p.40.

Google Scholar

[20] A. W. Thompson and M. F. Ashby: Scripta Metall. Vol. 18 (1984), p.127.

Google Scholar

[21] H. Qiu, H. Mori, M. Enoki and T. Kishi: ISIJ Inter. Vol. 39 (1999), p.352.

Google Scholar

[22] H. Qiu, H. Mori, M. Enoki and T. Kishi: ISIJ Inter. Vol. 39 (1999), p.358.

Google Scholar