The Ca-Rich Corner of the Al-Ca-Zn System

Article Preview

Abstract:

In this work, the partial isothermal section of the Al-Ca-Zn system in the region between 33.3 and 100 at.% Ca has been investigated at 350°C using key alloys. The actual composition of the alloys is measured by inductively coupled plasma technique. Phase relations and solubility limits of the binary and ternary compounds have been determined by means of electron probe microanalysis and X-ray diffraction. In the current work, a new ternary compound has been identified in this region with the Al9Ca31Zn10 (IM1) composition. Binary compound Al14Ca13 (IM2) has an extended solid solubility into the ternary system. The homogeneity ranges of the Al2Ca, the MgNi2-type C36 phase Al2-xCaZnx (0.28≤x≤0.70) (IM3) at 350°C and CaZn2 compounds in the pseudobinary Al2Ca-CaZn2 section have been determined at 350°C and the results are combined with the literature to construct the partial vertical Al2Ca-CaZn2 section and partial isothermal Al-Ca-Zn section at 350°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.M. Moore, L.R. Morris, A new superplastic aluminum sheet alloy, Material Science and Engineering, Vol. 43, Issue 1 1980, pp.85-92.

DOI: 10.1016/0025-5416(80)90211-6

Google Scholar

[2] D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, W. Dengyun, Microstructure and mechanical properties of Mg–Al based alloy with calcium and rare earth additions, Materials Science and Engineering, Vol. 356, Issue 1-7, 2003, pp.1-7.

DOI: 10.1016/s0921-5093(02)00551-8

Google Scholar

[3] N. Kono, Y. Tsuchida, S. Muromachi and H. Watanabe, Study of the Al-Ca-Zn ternary phase diagram, Light Metals, Vol. 35, 1985, pp.574-580.

DOI: 10.2464/jilm.35.574

Google Scholar

[4] I.N. Ganiev, M. S. Shukroev and K.M. Nazarov, Effect of phase composition on the electrochemical behavior of Aluminum-Zinc-Calcium alloys, Zhurnal Prikladnoi Khimii, Vol. 68, Issue 10, 1995, pp.1646-1649.

Google Scholar

[5] I.N. Gantsev, K.M. Nazarov, M.M. Khakdodov and N.I. Gantseva, Interaction of binary eutectics in Al Zn-Ca (Sr, Ba) Systems, Evtektika V, Mizhnarodna Konferentsiya, Dnepropetrovsk, National Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine, 2000, pp.56-58.

Google Scholar

[6] K. Soderberg, M. Bostrom, Y. Kubota, T. Nishimatsu. R. Niewa, U. Haussermann, Y. Grin, and O. Terasaki, Crystal structures and phase stability in pseudobinary CaAl2-xZnx, Journal of Solid State Chemistry, Vol. 179, Issue 8, 2006, p.2690–2697.

DOI: 10.1016/j.jssc.2006.05.018

Google Scholar

[7] M. Pani, L. Fornasini and F. Merlo, The CaAg2—CaZn2—CaAl2 pseudoternary system: crystal structures and structural stability, Zeitschrift für Kristallographie: Vol. 222, Issue 5, 2006, pp.218-225.

DOI: 10.1524/zkri.2007.222.5.218

Google Scholar

[8] G. Cordier, E. Czech and H. Schafer, CaAl2Zn2, The First Example of an Inverse, ThCr2Si2 Structure, Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie, Vol. 39B, Issue 12, 1984, pp.1629-1632.

Google Scholar

[9] S. Wasiur-Rahman, M. Medraj, A thermodynamic description of the Al-Ca-Zn ternary system, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 33, Issue 3, 2009, pp.584-598.

DOI: 10.1016/j.calphad.2009.06.001

Google Scholar

[10] B. Huang, J. D. Corbett, Two new binary Calcium-Aluminum compounds: Ca13Al14, with a novel Two-Dimensional aluminum network, and Ca8Al3, and Fe3Al-Type, Inorganic Chemistry, Vol. 37, 1998, pp.5827-5833.

DOI: 10.1002/chin.199905018

Google Scholar