Silk Fibroin: A Promising Biomaterial

Article Preview

Abstract:

Silk fibroin (SF) is a protein fiber spun by Bombyx mori silkworm. SF fibers are about 10-25 μm wide in diameter and a single cocoon may provide over 1000 m of SF fibers. SF can present several conformations regarding protein secondary structure which ultimately define the structural properties of SF-based materials. For this reason, a rigorous control on its processing conditions shall be performed. It is known that SF has excellent properties to be used in biomaterials field, controlled release and scaffolds for tissue engineering. In addition, SF can be processed in several forms, such as films, fibers, hydrogels or microparticles. This work seeks to provide an overview on SF processing conditions, regarding the preparation of SF membranes (dense and porous), hydrogels and biocomposites, focusing on biomaterials application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-104

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, D. L. Kaplan: Biomaterials Vol. 24 (2003), pp.401-416.

DOI: 10.1016/s0142-9612(02)00353-8

Google Scholar

[2] O. Hakimi, D. P. Knight, F. Vollrath, P. Vadgama: Composites Part B-Engineering Vol. 38 (2007), pp.324-337.

DOI: 10.1016/j.compositesb.2006.06.012

Google Scholar

[3] C. Vepari, D. L. Kaplan: Progress in Polymer Science Vol. 32 (2007), pp.991-1007.

Google Scholar

[4] C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z. G. Li: Nucleic Acids Research Vol. 28 (2000), pp.2413-2419.

Google Scholar

[5] Y. Kawahara, K. Furukawa, T. Yamamoto: Macromolecular Materials and Engineering Vol. 291 (2006), pp.458-462.

Google Scholar

[6] L. Qiang, C. B. Cao, Y. Zhang, X. L. Man, H. S. Zhu: Journal of Materials Science-Materials in Medicine Vol. 15 (2004), pp.1193-1197.

Google Scholar

[7] U. J. Kim, J. Y. Park, C. M. Li, H. J. Jin, R. Valluzzi, D. L. Kaplan: Biomacromolecules Vol. 5 (2004), pp.786-792.

Google Scholar

[8] G. M. Nogueira, A. C. D. Rodas, C. A. P. Leite, C. Giles, O. Z. Higa, B. Polakiewicz, M. M. Beppu: Bioresource Technology Vol. 101 (2010), pp.8446-8451.

DOI: 10.1016/j.biortech.2010.06.064

Google Scholar

[9] E. Marsano, M. Canetti, G. Conio, P. Corsini, G. Freddi: Journal of Applied Polymer Science Vol. 104 (2007), pp.2187-2196.

DOI: 10.1002/app.24856

Google Scholar

[10] F. Zhang, B. Q. Zuo, H. X. Zhang, L. Bai: Polymer Vol. 50 (2009), pp.279-285.

Google Scholar

[11] B. Q. Zuo, L. Liu, Z. Wu: Journal of Applied Polymer Science Vol. 106 (2007), pp.53-59.

Google Scholar

[12] M. M. Beppu, B. Polakiewicz, G. M. Nogueira, Patent BR200601975-A. (2008).

Google Scholar

[13] G. M. Nogueira, A. C. D. Rodas, R. F. Weska, C. G. Aimoli, O. Z. Higa, M. Maizato, A. A. Leiner, R. N. M. Pitombo, B. Polakiewicz, M. M. Beppu: Materials Science & Engineering C-Materials for Biological Applications Vol. 30 (2010), pp.575-582.

DOI: 10.1016/j.msec.2010.02.011

Google Scholar

[14] R. F. Weska, G. M. Nogueira, W. C. Vieira Jr., M. M. Beppu: Key Engineering Materials Vol. 396-398 (2009), pp.187-190.

Google Scholar

[15] H. Y. Cheung, K. T. Lau, X. M. Tao, D. Hui: Composites Part B-Engineering Vol. 39 (2008), pp.1026-1033.

Google Scholar

[16] A. Motta, C. Migliaresi, F. Faccioni, P. Torricelli, M. Fini, R. Giardino: Journal of Biomaterials Science, Polymer Edition Vol. 15 (2004), pp.851-864.

DOI: 10.1163/1568562041271075

Google Scholar

[17] Y. Tamada: Biomacromolecules Vol. 6 (2005), pp.3100-3106.

Google Scholar

[18] H. J. Jin, D. L. Kaplan: Nature Vol. 424 (2003), pp.1057-1061.

Google Scholar

[19] B. D. Lawrence, F. Omenetto, K. Chui, D. L. Kaplan: Journal of Materials Science Vol. 43 (2008), pp.6967-6985.

Google Scholar