[1]
Zoltan Szaraz, Peter Palcek, Maria Chalupova and Zuzanka Trojanova, in: Magnesium Alloys - Design, Processing and Properties, edited by Frank Czerwinski, InTech publications, January (2011).
Google Scholar
[2]
T.S. Srivatsan, T.S. Sudarshan, in: Rapid Solidification Technology: An Engineers Guide, Technomic Publishing Company, Lancaster (1993), p.603–720.
Google Scholar
[3]
M.M. Avedesian and H. Baker (editors) ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, Ohio, UA, (1999).
Google Scholar
[4]
T.S. Srivatsan, Satish Vasudevan, M. Petraroli, Journal of Alloys and Compounds, Vol. 461, (2008), p.154–159.
Google Scholar
[5]
M. Jayamathy, S.V. Kailas, K. Kumar, S. Seshan and T.S. Srivatsan, Materials Science and Engineering A, Vol. 393 (2005), p.27–35.
DOI: 10.1016/j.msea.2004.09.070
Google Scholar
[6]
K.F. Ho, M. Gupta, T.S. Srivatsan, Materials Science and Engineering A , Vol. 369 (2004), p.302–308.
Google Scholar
[7]
M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Journal of Alloy and Composites, Vol. 509 (2011) pp.7572-7578.
Google Scholar
[8]
M. Paramsothy, J. Chan, R. Kwok, M. Gupta, Materials Science and Engineering A , Vol. 528 (2011), pp.6545-6551.
Google Scholar
[9]
X.L. Zhong, W.L. E Wong, M. Gupta, Acta Materialia, Vol. 55 (2007), pp.6338-6344.
Google Scholar
[10]
C. S Goh, M. Gupta, J. Wei, L. C Lee, Journal of Composite Materials, Vol 42 (2008), p.2039 – (2050).
Google Scholar
[11]
K.K. Deng, K. Wu, Y.W. Wu, K.B. Nie and M.Y. Zheng, Journal of Alloys and Compounds, Vol. 504 (2010), pp.542-547.
Google Scholar
[12]
S K Thakur, T.S. Srivatsan , M. Gupta, Materials Science and Engineering A , Vol. 466 (2007), p.32–37.
Google Scholar
[13]
M. K. Habibi, M. Paramsothy, A. M. S. Hamouda, M. Gupta, Journal of Materials Science , Vol. 46 (2011), pp.4588-4597.
Google Scholar
[14]
C S Goh, J Wei, L C Lee and M. Gupta, Nanotechnology , Vol. 17 (2006), p.7–12.
Google Scholar
[15]
M.K. Habibi, M. Paramsothy, A.M.S. Hamouda, M. Gupta, Composites Science and Technology, Vol. 71 (2011), p.734–741.
Google Scholar
[16]
M. Paramsothy, M. Gupta, Jimmy Chan, Richard Kwok, Materials Sciences and Applications, Vol. 2 (2011), pp.20-29.
Google Scholar
[17]
M. Paramsothy, S.F. Hassan, N. Srikanth and M. Gupta, Composites Part A: Applied Science and Manufacturing, Vol. 40 (2009), pp.1490-1500.
Google Scholar
[18]
M. Paramsothy, J. Chan, R. Kwok and M. Gupta, Composites: Part A, Vol. 42 (2011), pp.180-188.
Google Scholar
[19]
L. Nascimento, S. Yi , J. Bohlen , L. Fuskova, D. Letzig, K. U Kainer, Procedia Engineering , Vol. 2 (2010), pp.743-750.
DOI: 10.1016/j.proeng.2010.03.080
Google Scholar
[20]
W. Ji-jie , G. Jin-hua , C. Li-qing, Transactions Non-ferrous Metals Society, China , Vol. 16 (2006), pp.892-896.
Google Scholar
[21]
Y. Ochi, K. Masaki, T. Matsumura, M. Wadasako, Materials Science and Engineering: A, Vol. 468-470 (2007), pp.230-236.
DOI: 10.1016/j.msea.2006.09.122
Google Scholar
[22]
N. Llorca, A. Bloyce, T.M. Yue, Materials Science and Engineering: A, Vol. 135, (1991), pp.247-252.
Google Scholar
[23]
W. Riehemann, Z. Trojanová, A. Mielczarek, Procedia Engineering, Vol. 2 (2010), pp.2151-2160.
Google Scholar
[24]
A. Mielczarek, W. Riehemann, Z. Trojanová, P. Lukac, Materials Science and Engineering A, Vol. 462 (2007), pp.230-233.
Google Scholar
[25]
L.M. Tham, M. Gupta, L. Cheng, Materials Science Technology, Vol. 15 (1999), pp.1139-1146.
Google Scholar
[26]
M. Gupta, M.O. Lai, S.C. Lim, Journal of Alloys and Compounds, Vol. 260 (1997), pp.250-255.
Google Scholar
[27]
T. S. Srivatsan, C. Godbole, M. Paramsothy and M. Gupta: in Processing and Fabrication of Advanced Materials XX (editors: Alan Lau, T. S. Srivatsan and D. Bhattacharyya). Hong Kong, December (2011).
Google Scholar
[28]
Standard Test Method for Cyclic Fatigue Testing of Materials E-466, American Society for Testing and Materials, Philadelphia, PA, (2003).
Google Scholar
[29]
T. S. Srivatsan, and R. Annigeri: Metallurgical and Materials Transactions, Vol. 31A, pp.959-974, (2000).
Google Scholar
[30]
E.A. Starke Jr: in Fatigue and Microstructure (edited by M. Meshii), American Society for Metals, Metals Park, Ohio, USA, (1979).
Google Scholar
[31]
T.S. Srivatsan, CV. Godbole, M. Paramothy and M. Gupta: The Cyclic Fatigue and Fracture Behavior of Carbon Nanotube Reinforced Magnesium Alloy AZ31, Journal of Materials Engineering and Performance (to be submitted) 2011. Table 1. Chemical composition of AZ31 (wt%) Al Zn Mn Si Cu Fe Ni Mg.
Google Scholar
01 Balance Table 2. Microhardness measurements of monolithic alloy AZ31 and AZ31/CNT nanocomposite. Indentation load: 100 grams, dwell time: 15 sec. Material Trail 1 Trail 2 Trail 3 Trail 4 Average Hardness (Kg/mm2) Average Hardness (GPa) AZ31 D1 (mm).
Google Scholar
[71]
7 --- --- D2 (mm).
Google Scholar
[72]
8 --- --- Hv (Kg/mm2).
Google Scholar
625 AZ31/1. 0 vol% CNT D1 (mm).
Google Scholar
[63]
1 --- --- D2 (mm).
Google Scholar
[60]
6 --- --- Hv (Kg/mm2).
Google Scholar
909 Table 3. Room temperature tensile properties of monolithic AZ31 alloy and AZ31/1. 0 vol% CNT composite. Specimen Elastic Modulus Yield Strength Ultimate Tensile Strength Elongation GL=0. 5" (%) Reduction in Area (%) Tensile Ductility ln (Ao/Ar) (%) ksi GPa ksi MPa ksi MPa AZ31 6567. 2.
DOI: 10.1520/f3125_f3125m-22
Google Scholar
[29]
6 203. 7.
Google Scholar
[42]
6 294. 0.
Google Scholar
[18]
0 AZ31/1. 0 vol% CNT 6307. 6.
Google Scholar
[34]
4 237. 4.
Google Scholar
[43]
9 302. 3.
Google Scholar
[28]
8 50 µm 50 µm (b) (a) Figure 1: Optical microstructure of (a) AZ31 and (b) AZ31/ 1. 0 vol % CNT T = 250C R = 0. 1 AZ31/1. 0 vol% CNT AZ31 Figure 2: Variation of maximum stress (smax) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of 0. 1. T = 250C R = 0. 1 AZ31/1. 0 vol% CNT AZ31 Figure 3: Variation of maximum elastic strain (smax/E) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of 0. 1. AZ31/1. 0 vol% CNT AZ31 T = 250C R = 0. 1 Figure 4: Variation of ratio of maximum stress to ultimate tensile strength (%) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of 0. 1. AZ31/1. 0 vol% CNT AZ31 T = 250C R = - 1 Figure 5: Variation of maximum stress (smax) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of - 1. AZ31/1. 0 vol% CNT AZ31 T = 250C R = - 1 Figure 6: Variation of maximum elastic strain (smax/E) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of - 1. AZ31/1. 0 vol% CNT AZ31 T = 250C R = - 1 Figure 7: Variation of ratio of maximum stress to ultimate tensile strength (%) with fatigue life (Nf) for AZ31 and AZ31/1. 0 vol% CNT at load ratio (R=smin/smax) of - 1. 50 µm 200 µm (a) (b) 4 µm (c) (d).
Google Scholar
[2]
5 µm Figure 8: Scanning electron micrographs of the high cycle fatigue fracture surface of AZ31 deformed at maximum cyclic stress of 102 MPa at load ratio of 0. 1, fatigue life of 197, 813 cycles, showing the following: (a) Overall morphology of failure. (b) High magnification observation of (a) showing the region of crack initiation and early microscopic crack growth. (c) A random dispersion of fine striations in the region of early microscopic crack growth. (d) Morphology, size and distribution of dimples on the overload fracture surface. 100 µm 2 µm 10 µm (a) (b) 4 µm (c) (d) Figure 9: Scanning electron micrographs of the high cycle fatigue fracture surface of AZ31 reinforced with CNT and deformed at maximum cyclic stress of 148 MPa at load ratio of 0. 1, fatigue life of 318, 568 cycles, showing the following: (a) Overall morphology of failure. (b) High magnification of (a) showing flat and near featureless transgranular region. (c) Random dispersion of striation like features in the region of stable crack growth. (d) High magnification observation of ( c) showing both fine microscopic cracks and microscopic voids. 10 µm 200 µm (a) (b) 5 µm 2 µm (c) (d) Figure 10: Scanning electron micrographs of the high cycle fatigue fracture surface of magnesium alloy AZ31 cyclically deformed at maximum stress of 101. 82 MPa, at load ratio of -1 and resultant fatigue life of 240, 921 cycles, showing: (a) Overall morphology of failure. (b) High magnification observation in (a) showing intrinsic features in the region of early microscopic crack growth. (c) Shallow striations randomly dispersed in the region of stable crack growth. (d) High magnification observation of the region of stable crack growth prior to the onset of unstable crack growth revealing fine microscopic cracks and shallow nature of striations. 200 µm 100 µm (a) (b) 4 µm 5 µm (d) (c) Figure 11: Scanning electron micrographs of the high cycle fatigue surface of magnesium alloy AZ31 reinforced with carbon nanotubes and cyclically deformed at maximum stress of 112. 76 MPa, at load ratio of -1 and resultant fatigue life of 401, 943 cycles, showing: (a) Overall morphology of failure. (b) Region of fracture surface showing transition from fatigue to overload. (c) High magnification observation of the region of stable crack growth showing fine and shallow striations intermingled with fine microscopic cracks. (d) Voids of varying size and shape intermingled with population of shallow dimples and fine microscopic cracks, features reminiscent of locally ductile and brittle failure mechanisms.
Google Scholar