The Influences of NaNbO3 on the Dielectric and Structure Characteristics of (1-X) (Na0.5Bi0.5)TiO3–x NaNbO3 Ceramics

Article Preview

Abstract:

Perovskite-based (1-x) (Na0.5Bi0.5)TiO3-x NaNbO3 [(1-x) NBT-x NN, x = 0.1, 0.2, 0.3 and 0.4] ceramics were sintered at 1080°C. Dielectric characteristics, crystalline structures, and Raman investigations were carried out on (1-x) (Na0.5Bi0.5)TiO3-x NaNbO3 ceramics. X-ray diffraction (XRD) patterns showed that NaNbO3 ceramic would form a solid solution with (Na0.5Bi0.5)TiO3 ceramic, and and unknown or second phases were not observable as well. NaNbO3 ceramic diffused into the crystalline structure of (Na0.5Bi0.5)TiO3 ceramic and (1-x) NBT-x NN ceramics still revealed a rhombohedral structure. The temperature-dielectric constant curves showed that as NN content increased, the temperature to reveal the maximum dielectric constant (Tm) was raised, the depolarization temperature (Td) was shifted to lower value, and the dielectric constant at Tm and the loss tangent at Td gradually decreased. The Raman bands at 770 and 830 cm-1 were attributed to the existence of the oxygen vacancies. In this study, the relaxor-type ferroelectric properties of NBT ceramic had been improved as NN ceramic was added.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1064-1069

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Krainik, Sov. Phys. Solid State Vol. 2, (1960), p.2651.

Google Scholar

[2] R. Ranjan and A. Dviwedi, Solid State Commun. Vol.135, (2005), p.394.

Google Scholar

[3] J. R. Gomah-Pettry, P. Marchet, A. Salak, V. M. Ferreira and J. P. Mercurio, Integr. Ferroelectr. 61, (2004), p.159.

Google Scholar

[4] G. Fan, W. Lu, F. Liang and J. Xiao, J. Phys. D: Appl. Phys. Vol. 41, (2008), p.035403.

Google Scholar

[5] T. Wada, K. Toyoike, Y. Imanaka and Y. Matsuo, Jpn. J. Appl. Phys. Vol. 40, (2001), p.5703.

Google Scholar

[6] W.G. Ralph Wyckoff, Crystal Structures, vol. 2, Interscience, New York, 1964.

Google Scholar

[7] C. Zhou, X. Liu, J Mater Sci: Mater Electron Vol. 19, (2008), p.29.

Google Scholar

[8] W. Sakamoto, M. Mizuno, J. Alloys Comp. Vol. 538, (2006), p.408.

Google Scholar

[9] R. Ranjan, V. Kothai, R. Garg, A. Agrawal, A. Senyshyn and H. Boysen, Appl. Phys. Lett. Vol. 95, (2009), p.042904.

DOI: 10.1063/1.3193658

Google Scholar

[10] S. P. Singh, R. Ranjan, and H. Boysen, J. Phys.: Condens. Matter Vol. 21, (2009), p.375902.

Google Scholar

[11] Y. Hiruma, H. Nagata and T. Takenaka, J. Appl. Phys. Vol. 104, (2008), p.124106,.

Google Scholar

[12] X. Yao, Z. L. Chen, I. E. Cross, J. Appl. Phys. Vol. 54, (1983), p.3399.

Google Scholar

[13] N. Setter, L. E. Cross, J. Appl. Phys. Vol. 51, (1980), p.4356.

Google Scholar

[14] L. E. Cross, Ferroelectrics Vol. 76, (1987), p.241.

Google Scholar

[15] D. Viehland, S. J. Jang, L. E. Cross, M. Wuttig, J. Appl. Phys. Vol. 68, (1990), p.2916.

Google Scholar

[16] C. Zhou, and X. Liu, J. Mater. Sci.: Mater. Electron. Vol. 19, (2008), p.29.

Google Scholar

[17] J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello and G. Lucazeau, J. Phys.: Condens. Matter Vol. 12, (2000), p.3267.

Google Scholar

[18] J. Kreisel, A. M. Glazer, P. Bouvier and G. Lucazeau, Phys. Rev. Vol. B63, (2001), p.174106.

Google Scholar

[19] A. Mineshige, M. Kobune and T. Yazawa, Solid State Ion. Vol. 177, (2006), p.2443.

Google Scholar

[20] A. Mineshigea, S. Okadaa, K. Sakaia, M. Kobunea, S. Fujiia, H. Matsumotob, T. Shimurab, H. Iwaharab and Z. Ogumic, Solid State Ion. Vol. 41, (2003), p.162.

Google Scholar