Effect of La2O3 Addition on the Microstructure and Electrical Properties of Copper-Nickel Manganese Thermistors

Article Preview

Abstract:

The effect of La2O3 addition on the microstructure and electrical properties of Mn0.75Ni1.25CuO4-xLa2O3 (0≤x≤0.3) was studied. The crystal structure, phase compositions and morphology were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The sintered ceramic bodies was typical polycrystalline, with cubic spinel structure of copper manganese oxide, rocksalt structure of nickel copper oxide, along with monoclinic phase of copper oxide and orthorhombic perovskite structure of lanthanum manganese oxide. The obtained ρ77K, B77K/90K constant and activation energy of the thermistors were in the range of 3.88-9.29 Ω cm, 245-261 K, and 0.0211–0.0225 eV, respectively. This means that the electrical properties can be adjusted to desired values, depending on the La content. So these prepared thermistors were intended to be used under low temperature conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1078-1082

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.D. Macklen: Thermistors, (Elcctrochemical Publications Limited, Scotland 1979)

Google Scholar

[2] O. Mrooz, A. Kovalski, J. Pogorzelska, O. Shpotyuk, M. Vakiv, B. Butkiewicz, J. Maciak, Microelecronics Reliability Vol. 41 (2001), p.773

DOI: 10.1016/s0026-2714(01)00027-0

Google Scholar

[3] D. Ilic, J. Butorac, L. Ferkovic, Measurement Vol. 41 (2008), p.294

Google Scholar

[4] K.M. Tsang, W. L. Chan, Sens. Actuators, A Vol. 154 (2009), p.16.

Google Scholar

[5] C.C. Wang, S. A. Akbar, W. Chen, J. R. Schorr, Sens. Actuators, A Vol. 58 (1997), p.237.

Google Scholar

[6] B.L. Brandt, D. W. Liu, L. G. Rubin, Rev. Sci. Instrum. Vol. 70 (1999), p.104

Google Scholar

[7] B. Gillot, M. Kharroubi, R. Metz, A. Rousset, Solid State Ionics Vol. 48 (1991), p.93

DOI: 10.1016/0167-2738(91)90204-o

Google Scholar

[8] E. Elbadraoui, J. L. Baudour, F. Bouree, B. Gillot, S. Fritsch, A. Rousset, Solid State Ionics Vol. 93 (1997), p.219

Google Scholar

[9] K. Singh, N. D. Pandit, C. Mande, J. Mater. Sci. Lett. Vol. 1 (1982), p.99

Google Scholar

[10] C. H. Zhao, B. Y. Wang, P. H. Yang, L. Winnubst, C. S. Chen, J. Eur. Ceram. Soc. Vol. 28 (2008), p.35

Google Scholar

[11] I. Maurin, P. Barboux, Y. Lassailly, J. P. Boilot, F. Villain, P. Dordor, J. Solid State Chem. Vol. 160 (2001), p.123

DOI: 10.1006/jssc.2001.9204

Google Scholar

[12] Y. Hao, W. Ma, Y. Qu, T. Xu, J. Electroceram. Vol. 15 (2005), p.251

Google Scholar

[13] Y. Lan, L. Yu, G. Chen, S. Yang, A. Chang, Int J Thermophys Vol. 31 (2010), p.1456

Google Scholar

[14] R.D. Shannon, Acta Cryst., Vol. A32 (1976), p.751

Google Scholar

[15] K. Park, D. Y. Bang, J. Mater. Sci. Mater. Electron. Vol. 14 (2003) 81

Google Scholar

[16] K. Park, J. Lee, Scripta Mater. Vol. 57 (2007), p.329

Google Scholar

[17] M. Suzuki, J. Phys. Chem. Solids Vol. 41 (1980), p.1253.

Google Scholar

[18] R.N. Jadhav, V. Puri, J. Alloys Compd. Vol. 507 (2010), p.151

Google Scholar

[19] O. Bodak, L. Akselrud, P. Demchenko, B. Kotur, O. Mrooz, I. Hadzaman, O. Shpotyuk, F. Aldinger, H. Seifert, S. Volkov, V. Pekhnyo, J. Alloys Compd. Vol. 347 (2002), p.14

DOI: 10.1016/s0925-8388(02)00675-8

Google Scholar

[20] C. Zener, Phys. Rev. Vol. 82 (1951), p.403

Google Scholar