Low-Frequency Damping Behavior of Porous Magnesium

Article Preview

Abstract:

The well-distributed porous magnesium was prepared through powder metallurgy route basing on space-holding method. The damping behavior of the porous magnesium was characterized by internal friction and measured by a multi-function internal friction apparatus. Experimental results revealed that the damping capacity of the porous magnesium was increased compared to that of the bulk magnesium, which can be understood by a dislocation damping mechanism associated with an inhomogeneous stress and strain distribution around the pores. In addition, an internal friction peak was observed in the spectra of internal friction against temperature. It was suggested that the dislocation sliding arising from a thermal activation process should be responsible for the peak appearance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

2002-2007

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Banhart: Prog. Mater. Sci. Vol. 46 (2001), p.559

Google Scholar

[2] L.P. Lefebvre, J. Banhart and D.C. Dunand: 'Porous Metals and Metallic Foams', Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, Montreal, Canada, DEStech Publications, Inc, (2007)

DOI: 10.1002/adem.200800241

Google Scholar

[3] L.F. Nielsen: J. Am. Ceram. Soc. Vol. 67 (1984), p.93

Google Scholar

[4] P. Puri and S.C. Cowin: J. Elasticity. Vol. 15 (1985), p.167

Google Scholar

[5] J. Zhang, M.N. Gungor, E.J. Lavernia: J. Mater. Sci. Vol. 28 (1993), p.1515

Google Scholar

[6] I.S. Golovin and H.R. Sinning: Mater. Sci, Eng A. Vol. 370 (2004), p.504

Google Scholar

[7] F.S. Han, Z.G.. Zhu, C.S. Liu ,et.al., Metall. Mater. Trans A.Vol. 30 (1999), p.771

Google Scholar

[8] Z. Ritchie, Z.L. Pan, K.W. Sprungmann, et.al: Canadian Metall. Quart. Vol. 26 (1987), p.239

Google Scholar

[9] M.M. Avedesian and H. Baker: 'Magnesium and Magnesium Alloys', ASM Specialty Handbook, ASM International, the Materials Information Society, Ohio, (1999)

Google Scholar

[10] Z.K. Xie, M. Tane, S.K. Hyun. et.al: Mater. Sci. Eng A. Vol. 417 (2006), p.129

Google Scholar

[11] C. S. Liu, Z. G. Zhu, F. S. Han et.al: J. Mater. Sci. Vol. 33 (1998), p.1769

Google Scholar

[12] C. S. Liu, Z. G. Zhu, F. S. Han, et.al: Philos. Mag A.Vol. 78 (1998), p.1329

Google Scholar

[13] D. Birchon: Eng. Mater. Des. Vol. 7 (1965), p.606, 692

Google Scholar

[14] A.S. Nowick and B.S. Berry: 'Anelastic Relaxation in Crystalline Solids', Academic Press, New York, (1972)

Google Scholar

[15] A. Granato and K. Lücke: J. Appl. Phys. Vol. 27 (1956), p.583,789

Google Scholar

[16] P. R. Bevington: 'Data Reduction and Error Analysis for the Physical Science', McGraw-Hill Book Comp, New-York, (1969)

Google Scholar

[17] G. J. Davis and S. Zhen: J. Mater. Sci. Vol. 18 (1983), p.1899

Google Scholar

[18] S. X. Wang, W. Liu, Y. L. Liu, et.al: Chin. Phys. Lett. Vol. 17 (2000), p.282

Google Scholar

[19] J. D. Eshelby: Proc. R. Soc A. Vol. 241(1957), p.376

Google Scholar

[20] C.S. Liu, F.S. Han, Z.G. Zhu: Acta. Physica. Sinica. Vol.46 (1997), p.1585

Google Scholar

[21] Q. F. Fang: Acta Metall. Sinica. Vol. 32 (1996), p.565

Google Scholar

[22] J. H. Gu, X. N. Zhang, M. Y. Gu: J. Alloy. Comp. Vol. 385 (2004), p.104

Google Scholar

[23] G. Fantozzi, C. Esnouf, S. M. Seyed reihani , et.al: Acta. Metall. Vol. 32 (1984), p.2175

Google Scholar

[24] M. L. NÓ, A. Oleaga, C. Esnouf, et.al: Phys. Stat. Sol a. Vol. 120 (1990), p.419

Google Scholar