GaN-Based LEDs on Nano-Patterned Sapphire Substrates

Article Preview

Abstract:

We have successfully fabricated light emitting diodes (LEDs) based on patterned sapphire substrates (PSSs) fabricated by employing nanoimprint lithography (NIL) technique. The nano-patterns were designed as regular triangles consisting of columns, whose diameters and pitches were 100, 150, 200, 250 nm and 200, 300, 400, 500 nm, respectively. 412 nm wavelength LEDs grown by metal organic chemical vapor deposition (MOCVD) method were also demonstrated. The NIL technique and nano-etching by employing RIE were demonstrated in details. The qualities of all LEDs based on PSSs are superior compared with that non-patterned sapphire substrate LED. The experimental results showed that the light output power was increased by using the PSS structure. At a driving current of 20 mA, the light output powers of LEDs based on PSSs with 200, 300, 400 and 500 nm pitches are enhanced by 59%, 79%, 42% and 48%, compared with the conventional LEDs. These results provide promising potential to increase output powers of commercial light-emitting devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

656-659

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Billeb, W. Grieshaber, D. Stocker, E.F. Schubert and R.F. Karlicek: Appl. Phys. Lett. 70 (1997), p.2790

Google Scholar

[2] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai: Jpn. J. Appl. Phys. 41 (2002), p.1431

DOI: 10.1143/jjap.41.l1431

Google Scholar

[3] Y. J. Lee, T. C. Hsu, H.C. Kuo, S. C. Wang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsueh, M. J. Jou and B. J. Lee: Mater. Sci. Eng. B 122 (2005), p.184

Google Scholar

[4] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang: J. Appl. Phys. 103 (2008), p.014314

Google Scholar

[5] T. N. Oder, K. H. Kim, J. Y. Lin and H. X. Jiang: Appl. Phys. Lett. 84 (2004), p.26

Google Scholar

[6] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Garder, M. G. Craford, J. R. Wendt, J. A. Simmons and M. M. Sigalas: Appl. Phys. Lett. 84 (2004), p.10

Google Scholar

[7] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa and D. Ueda: Jpn. J. Appl. Phys. 43 (2004), p.5809

DOI: 10.1143/jjap.43.5809

Google Scholar

[8] D. H. Kim, C. C. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi and Q. H. Park: Appl. Phys. Lett. 87 (2005), p.203508

Google Scholar

[9] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao: Jpn. J. Appl. Phys. 47 (2008), p.6706

Google Scholar

[10] B. J .Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy Jr, J. Bang and J. Kim: Thin Solid Films 516 (2008), p.7744

DOI: 10.1016/j.tsf.2008.05.046

Google Scholar

[11] Y. Chen, F. Carcenac, C. Ecoffet, D. J. Lougnot and H. Launois: Microelectronic Eng. 46 (1999), p.69

DOI: 10.1016/s0167-9317(99)00017-9

Google Scholar

[12] S. Y. Chou, P. R. Krauss and P. J. Renstrom: Appl. Phys. Lett. 67 (1995), p.3114

Google Scholar

[13] N. Chaix, S. Landis, C. Gourgon, S. Merino, V. G. Lambertini, G. Durand and C. Perret: Microelectronic Eng. 84 (2007), p.880

DOI: 10.1016/j.mee.2007.01.132

Google Scholar

[14] K. Bao, X. N. Kang, B. Zhang, T. Dai, Y. j. Sun, Q. Fu, G. J. Lian, G. C. Xiong, G. Y. Zhang and Y. Chen: Appl. Phys. Lett. 92 (2008), p.141104

Google Scholar

[15] H. K. Cho, J. Jang, J. H. Choi, J. Kim and J. S. Lee: Opt.Express 14 (2006), p.8654

Google Scholar