[1]
R. D. Hagenmaier, P. E. Shaw. Permeability of Shellac Coatings to Gases and Water-Vapor. J. Agric. Food Chem. 1991, 39: 825–829.
DOI: 10.1021/jf00005a001
Google Scholar
[2]
N. Pearnchob, J. Siepmann, R. Bodmeier. Pharmaceutical applications of shellac: Moisture-protective and taste-masking coatings and extended-release matrix tablets. Drug Dev. Ind. Pharm. 2003, 29: 925–938.
DOI: 10.1081/ddc-120024188
Google Scholar
[3]
C. Heron, N. Nemcek, K. Bonfield, D. Dixon, B. S. Ottaway. The chemistry of neolithic beeswax. Naturwissenschaften, 1994, 81(6): 266-269
DOI: 10.1007/bf01131579
Google Scholar
[4]
J.S. Mills, R. White. The organic chemistry of museum objects of butterworths, London.
Google Scholar
[5]
H. G. M. Edwards, D. W. Farwell, L. Daffner. Fourier-trnsform raman spectroscopic study of natural waxes and resins I. Spectrochimica acta part a, 1996, 52:1639-1648
DOI: 10.1016/0584-8539(96)01730-8
Google Scholar
[6]
M. R. Derrick, D. C. Stulik, J. M. Landry, S. P. Bouffard. Fourier transform infrared spectral analysis of natural resins used in furniture finishes. 1992, 31(2): 225-236
Google Scholar
[7]
A. M. Shedrinsky, T. P. Wampler, N. Indictor, N. S. Baer. Application of analytical pyrolysis to problems in art and archaeology: a review. Journal of Analytical and Applied Pyrolysis. 1989, 15:393-412
DOI: 10.1016/0165-2370(89)85050-8
Google Scholar
[8]
G. C. Galletti, R. Mazzeo, Pyrolysis/gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy of amber. Rapid Communications in Mass Spectrometry. 1993, 7(7): 646-650
DOI: 10.1002/rcm.1290070718
Google Scholar
[9]
J. M. Challinor. Characterisation of rosin-based commercial resins by pyrolysis− and simultaneous pyrolysis methylation−gas chromatography/mass spectrometry techniques . Journal of Analytical and Applied Pyrolysis. 1993, 25(7): 349-360
DOI: 10.1016/0165-2370(93)80054-4
Google Scholar
[10]
G. Chiavari, D. Fabbri, R. Mazzeo, P. Bocchini, G. C. Galletti. Pyrolysis gas chromatography-mass spectrometry of natural resins used for artistic objects. Chromatographia. 1995, 41(5-6):273-281
DOI: 10.1007/bf02688040
Google Scholar
[11]
J. M Barton. The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions. Advances in Polymer Science. 1985, 72:111-154
DOI: 10.1007/3-540-15546-5_5
Google Scholar
[12]
D. Rou, C. N. Cacaval, F. Musta, C. Ciobanu. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochimica Acta.2002, 383(1-2) :119-127
DOI: 10.1016/s0040-6031(01)00672-4
Google Scholar
[13]
Y. Y. Huang, C. C. Su. Effects of poly(vinyl acetate) and poly(methyl methacrylate) low-profile additives on the curing of unsaturated polyester resins. I. Curing kinetics by DSC and FTIR. Journal of Applied Polymer Science.1995, 55 (2):305 – 322
DOI: 10.1002/app.1995.070550214
Google Scholar
[14]
S. G. Hong, J. J. Lin. The effects of glass beads and silane treatments on the curing behavior of a brominated epoxy resin: DSC analyses. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 35(13):2063-2071
DOI: 10.1002/(sici)1099-0488(19970930)35:13<2063::aid-polb7>3.0.co;2-x
Google Scholar
[15]
D. N. Goswami, S. K. Saha. An investigation of the melting properties of different forms of lac by differential scanning calorimetry. Surface Coatings International Part B: Coatings Transactions. 2000,83(7): 334-336
DOI: 10.1007/bf02692742
Google Scholar
[16]
S. Cebulak, A. Matuszewska, A. Langier-Kuzniarowa. Diversification of natural resins of various origin: oxyreactive thermal analysis and infrared spectroscopy. Journal of thermal analysis and calorimetry, 2003, 71(3):905-914
DOI: 10.1023/a:1023390629412
Google Scholar