Theoretical Investigation of Energy Levels Splitting of CsCdBr3:Pr3+ Crystal

Article Preview

Abstract:

Based upon the single electron energy state information and the combination of Racah’s group-theoretical consideration with Slater’s wavefunctions, the 91×91 complete energy matrix of 4f2 configuration ion Pr3+ in C3v crystal field has been constructed. The calculated Stark energy levels of CsCdBr3:Pr3+ present a good agreement with the experimental values, which implies that the complete energy matrix method can be received as a recommendable tool to perform a theoretical analysis to the doped crystal. Besides, the influence of Pr3+ ions on the energy levels splitting of the host crystal CsCdBr3 has been compared with two doped trichlorides by Pr3+ ions, which indicates that the sixth order crystal field parameters play an indispensable role in splitting the energy levels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

665-669

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. P. Souza, F. A. A. Paz, R. O. Freire, L. D. Carlos, O. L. Malta, S. Alves and G. F. de Sa, J. Phys. Chem. B Vol. 111 (2007), p.9228

Google Scholar

[2] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, Nature Vol. 453 (2008), p.761

Google Scholar

[3] C. de la Clarina, Q. Huang, J. W. Lynn, J. Y. Li, W. Ratcliff ll, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang and P. C. Dai, Nature Vol. 453 (2008), p.899

Google Scholar

[4] G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo and N. L. Wang, Phys. Rev. Lett. Vol. 100 (2008), p.247002

Google Scholar

[5] S. X. Chi, D. T. Adroja, T. Guidi, R. Bewley, S. L. Li, J. Zhao, J. W. Lynn, C. M. Brown, Y. Qiu, G. F. Chen, J. L. Lou, N. L. Wang and P. C. Dai, Phys. Rev. Lett. Vol. 101 (2008), p.217002

Google Scholar

[6] M. O. Rodrigues, J. N. B. da Costa, C. A. de Simone, A. S. A. Adriano, A. M. Brito-Silva, A. A. P. Filipe, M. E. de Mesquita, A. J. Severino and O. F. Ricardo, J. Phys. Chem. B Vol. 112 (2008), p.4204

Google Scholar

[7] S. Bertaina, S. Gambarelli, A. Tkachuk, I. N. Kurkin, B. Malkin, A. Stepanov and B. Barbara, Nature Nanotechnology Vol. 2 (2007), p.39

DOI: 10.1038/nnano.2006.174

Google Scholar

[8] G. Racah, Phys. Rev. Vol. 61 (1942), p.186

Google Scholar

[9] G. Racah, Phys. Rev. Vol. 76 (1949), p.1352

Google Scholar

[10] J. C. Slater, Quantum Theory of Atomic Structure Vol. 2 (Mcgraw-Hill Book Company, Inc., USA 1960).

Google Scholar

[11] D. J. Newman and Ng. Betty, Crystal Field Handbook (Cambridge University Press, UK 2000).

Google Scholar

[12] B. R. Budd, Operator Techniques in Atomic Spectroscopy (Mcgraw-Hill Book Company, Inc., New York 1963).

Google Scholar

[13] E. Antic-Fidancev, M. Lemaitre-Blaise, J. P. Chaminade and P. Porcher, J. Alloys Compd. Vol. 225 (1995), p.95

DOI: 10.1016/0925-8388(94)07015-6

Google Scholar

[14] Th. Tröster, T. Gregorian and W. B. Holzapfel, Phys. Rev. B Vol. 48 (1993), p.2960

Google Scholar

[15] R. S. Rana and F. W. Kaseta, J. Chem. Phys. Vol. 79 (1983), p.5280

Google Scholar

[16] R. S. Rana, J. Shertzer and F. W. Kaseta, Lanthanide Actinide Res. Vol. 2 (1988), p.295

Google Scholar