Surface Morphology and Infrared Absorption of Silicon Irradiated by Picosecond Laser Pulses in SF6

Article Preview

Abstract:

The microstructured samples were prepared by irradiating silicon surface with picosecond laser pulses in SF6. The surface morphology of microstructured samples irradiated at different laser fluence was characterized by SEM. The samples exhibited high optical absorptance over a wide wavelength range between 300 and 2700 nm. The absorptance of samples irradiated with the fluence of 1.0 J/cm2 was measured to be up to 95% between 1100 and 2700 nm. The infared absorptance of the surface-structured samples increased with increasing fluence. Whereas, as the annealing temperature was increased, the infared absorptance of the samples irradiated at the same fluence decreased. A tentative explanation for the effects of laser fluence and annealing temperature on the infared absorptance has been proposed based on the formation of mid-band gap impurity bands and the multiple reflections of light between microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 418-420)

Pages:

77-81

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur: Appl. Phys. Lett. Vol. 73 (1998), p.1673

Google Scholar

[2] R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, C. M. Friend: J. Appl. Phys. Vol. 73, (2003), p.2626

Google Scholar

[3] T.-H. Her, R.J. Finlay, C.Wu, E. Mazur: Appl. Phys. A Vol. 70, (2000), p.383

Google Scholar

[4] Michael A. Sheehy, Brian R. Tull, Cynthia M. Friend, Eric Mazur: Materials Science and Engineering B Vol. 137, (2007), p.289

Google Scholar

[5] James E. Carey, Catherine H. Crouch, Mengyan Shen, and Eric Mazur: Optics Letters, Vol. 30, (2005), p.1773

Google Scholar

[6] Brian R. Tull, Mark T. Winkler, Eric Mazur: Appl. Phys. A Vol. 96, (2009), p.327

Google Scholar

[7] A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes: Appl. Phys. Lett. Vol. 74, (1999), p.2322

Google Scholar

[8] Y. Liu, S. Liu, Y. Wang, G. Feng, J. Zhu, and L. Zhao: Laser Physics, Vol. 18, (2008), p.1148.

Google Scholar

[9] C.H. CROUCH, J. E. CAREY, M. SHEN, E. MAZUR, F. Y. GÉNIN: Appl. Phys. A Vol. 79, (2004), p.1635

Google Scholar

[10] C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M. Farrell, P. Gothoskar, A. Karger: Appl. Phys. Lett. Vol. 78, (2001), p.1850

DOI: 10.1063/1.1358846

Google Scholar

[11] B Gaković, M Trtica, D Batani, T Desai, P Panjan and D Vasiljević-Radović: J. Opt. A: Pure Appl. Opt. Vol. 9, (2007), p.76

DOI: 10.1088/1464-4258/9/6/s11

Google Scholar

[12] ZHAO Ming, YIN Gang, ZHU Jing-Tao, ZHAO Li: CHIN. PHYS. LETT. Vol. 20, (2003), p.1789

Google Scholar

[13] T. J. Chuang: J. Chem. Phys. Vol. 74, (1981), p.1453

Google Scholar

[14] V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis: APPLIED OPTICS Vol. 47, (2008), p.1846

Google Scholar

[15] E. S. Kolesar, Jr., V. M. Bright, and D. M. Sowders: Thin Sold Films Vol. 290–291, (1996), p.23

Google Scholar

[16] Janzen E, Stedman R, Grossmann G, Grimmeiss HG: Phys Rev. B Vol. 29, (1984), p. (1907)

Google Scholar

[17] Pajot B, Clerjaud B, McCluskey MD: Phys. Rev. B Vol. 69, (2004), p.085210

Google Scholar

[18] T. G. Kim, Jeffrey M. Warrender, Michael J. Aziz: Appl. Phys. Lett. Vol. 88, (2006), p.241902

Google Scholar