[1]
D. Liberzon, and A. S. Morse, Basic problems in stability and design of switched systems, IEEE Cont. Syst. Magaz. 19 (1999) 59-70.
Google Scholar
[2]
A. S. Morse, Supervisory control of families of linear set-point controllers-part 1: exact matching. IEEE Trans. Auto. Contr. 41 (1996) 1413-1431
DOI: 10.1109/9.539424
Google Scholar
[3]
A. A. Agrachev and D. Liberzon, Lie-algebraic stability criteria for switched systems. SIAM J. Contr. Opt., 41 (2001) 253-269.
DOI: 10.1137/s0363012999365704
Google Scholar
[4]
D. Cheng, L. Guo and J. Huan, On quadratic Lyapunov functions. IEEE Trans. Auto. Contr. 48 (2003) 885-890.
DOI: 10.1109/tac.2003.811274
Google Scholar
[5]
W. P. Dayawansa and C. F. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Auto. Contr. 44 (1999) 751-760.
DOI: 10.1109/9.754812
Google Scholar
[6]
Z. G. Li, C. Y. Wen and Y. C. Soh, Stabilization of a class of switched systems via designing switching laws. IEEE Trans. Auto. Contr. 46 (2001) 665-670.
DOI: 10.1109/9.917674
Google Scholar
[7]
J. P. Hespanha and A. S. Morse, Stability of switched systems with average dwell-time. In Proc. 38th Conf. Decision and Control, Phoenix, Arizona, USA, Dec (1999) 2655-2660.
DOI: 10.1109/cdc.1999.831330
Google Scholar
[8]
G. Zhai, B. Hu, K. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. Int. J. Syst. Sci. 32 (2001) 1055-1061.
DOI: 10.1080/00207720116692
Google Scholar
[9]
M. A. Wicks, P. Peleties and R. A. DeCarlo, Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Eur. J. Contr. 4 (1998) 140-147.
DOI: 10.1016/s0947-3580(98)70108-6
Google Scholar
[10]
X. Xu and P. J. Antsaklis, Stabilization of second-order LTI switched systems. Int. J. Contr. 73 (2000) 1261-1279.
DOI: 10.1080/002071700421664
Google Scholar
[11]
Z. Sun and S. S. Ge, Dynamical output feedback stabilization of a class of switched linear systems. IEEE Trans. Circu. and Syste-I. 50 (2003) 1111-1115.
DOI: 10.1109/tcsi.2003.815216
Google Scholar
[12]
Z. Ji, L. Wang, G. Xie and F. Hao, Linear matrix inequality approach to quadratic stabilization of switched systems. IEE Proc,-Contr Theory Appl., 151 (2004) 289-294.
DOI: 10.1049/ip-cta:20040306
Google Scholar
[13]
G. Millerioux and J. Daafouz, Input independent chaos synchronization of switched systems. IEEE Trans. Auto. Contr. 49 (2004) 1182-1187.
DOI: 10.1109/tac.2004.831118
Google Scholar