[1]
Du. Haiqing, Bai Xuefeng: Progress of Biomass Pyrolysis Techology[J]. Biomass Chemical Engineering, 2007, 41(4): 54-58.
Google Scholar
[2]
Huang Huajiang. Control System for a Wall-Cooled Fixed-Bed Reactor[D] Shanghai: East China Univeristy of Science and Technonlogy, (1998).
Google Scholar
[3]
Li Pu, Wang Shuqing Wang Jicheng, Control of Fixed Bed Reactors[J], Journal of Fushun Petroleum Institute, 1989, 18(2): 46-51.
Google Scholar
[4]
Yaowei. modeling and control of fixed-bed reactors[D]. Hangzhou, Zhejiang University, (1997).
Google Scholar
[5]
MacGregor, J.F. and Wong, A.K.L. Multivariate model Identification and Stochastic Control of a Chemical Reactor[J]. Technometrics, 1980, 22: 453-464.
DOI: 10.1080/00401706.1980.10486192
Google Scholar
[6]
Kozub, D.J., MacGregor, J.F. and Wright, J.D. Application of LQ and IMC Controllers to a Packed-bed Reactor[J]. AIChE Journal, 1987, 33(9): 1496-1506.
DOI: 10.1002/aic.690330909
Google Scholar
[7]
Harris, T.J., MacGregor, J.F., Wright, J.D. Self-tuning and Adaptive Controllers: An Application to Catalyst Reactor Control[J]. Technometrics, 1980, 22: 153-164.
DOI: 10.1080/00401706.1980.10486130
Google Scholar
[8]
Hua Xiangming. Bilinear Approximation of a Distributed Fixed-Bed Reactor Model[J]. J. Proc. Cont., 1994, 4(3): 149-161.
Google Scholar
[9]
liu Bogao, Hua Xiangming, Yu Jinshou. Nonlinear Adaptive Control of the Hot Spot Temperature in an Industria Fixed-bed Reactor[J]. the Jourary of East China Univerist of Science and Technonlogy, 1997, 23(5): 603-607.
Google Scholar
[10]
Liu lianghong, et cl. On-Line Process Identification for Fixed-bed Reactors using nonlinear Progamming Technique[J], The jourary of Chemical Engineering , 1998, 49(2): 176-184.
Google Scholar
[11]
Shahrokhi, M., Baghmisheh, G.R. Modeling, simulation and control of a methanol synthesis fixed-bed reactor[J]. Chemical Engin`eering Science, 2005, 60(15): 4275-4286.
DOI: 10.1016/j.ces.2004.12.051
Google Scholar
[12]
Yasari, M. Shahrokhi, and H. Abedini. Modeling Simulation and Control of a Tubular Fixed-bed Dimethyl Ether Reactor[J]. Chem. Biochem. Eng. Q, 2010, 24(4): 415-423.
Google Scholar
[13]
Farsi, M., Eslamloueyan, R., Jahanmiri, A. Modeling, simulation and control of dimethyl ether synthesis in an industrial fixed-bed reactor[J]. Chemical Engineering & Processing, 2011, 50(1): 85-94.
DOI: 10.1016/j.cep.2010.11.013
Google Scholar
[14]
Gøbel, Benny et al. The development of a computer model for a fixed bed gasifier andits use for optimization and control[J]. Bioresource Technology, 2007, 98(10): 2043-(2052).
DOI: 10.1016/j.biortech.2006.08.019
Google Scholar
[15]
hamed Ammar Abbassi et al. A practical approach for modelling and control of biomass pyrolysis pilot plant with heat recovery from combustion of pyrolysis products[J]. Fuel Processing Technology, 2009, 90: 1278–1285.
DOI: 10.1016/j.fuproc.2009.06.010
Google Scholar
[16]
Alexander L. Brown et al. Design and Characterization of an Entrained Flow Reactor for the Study of Biomass Pyrolysis Chemistry at High Heating Rates[J]. Energy & Fuels, 2001, 15: 1276-1285.
DOI: 10.1021/ef010083k
Google Scholar
[17]
A. Balestrino, F. Bassini and P. Pelacchi. On the Control of a Pyrolysis Process[C]. IEEE: (2007).
Google Scholar
[18]
Davison E.J. A method for simplifying linear dynamic systems[J]. IEEE Trans. AC, 1966, AC-11(1): 93-98.
Google Scholar
[19]
Bonvin D and Mellichamp D A. Int. J. Control, 1982, 35: 829-848.
Google Scholar
[20]
Hua Xiangming . Eduction of Singular Perturbation Bilinear Systems with Applications to Fixed-bed Reactor[J]. The Jourary of East China Univerist of Science and Technonlogy 1986, 12(2): 145-153.
Google Scholar
[21]
Costanza V. and Neuman C.E. An Adaptive Control Strategy for Nonlinear Processes[J]. Chemical Engineering Science, 1995, 50(13): 2041-(2053).
DOI: 10.1016/0009-2509(95)00039-8
Google Scholar
[22]
L. Mohammadi, I. Aksikas and J. F. Forbes. Optimal Control of a Time-Varying Catalytic Fixed Bed Reactor With Catalyst Deactivation[C]. 2009 American Control Conference: (2009).
DOI: 10.1109/acc.2009.5160534
Google Scholar
[23]
Hallager L., Jorgensen S.B. Experimental Investigation of Self-tuning Control of a Gas-Phase Fixed Bed Reactor with Multiple Inputs[J]. IFAC Control Science and Technology, 1981: 2743-2750.
DOI: 10.1016/s1474-6670(17)63880-1
Google Scholar
[24]
Seborg D.E., Edgar T.F. and Shah S.L., AIChE J., 1986, 32: 881-913.
Google Scholar
[25]
Zhou Xinggui et al. On-Line Prediction of a Fixed-Bed Reactor Using K-L Expansion and Neural Networks[J]. Chinese J. of Chem. Eng, 1998, 6(4): 299-305.
Google Scholar
[26]
Liu Bogao et al. Inferential Control of Fixed-bed Reactors Based on Improved Hybrid Model[J]. The Jourary of East China Univeristof Science and Technonlogy, 1998, 24(4): 484-487.
Google Scholar
[27]
LiuBogao et cl. Cascade Inferential Control for a Nonadiabatic fixed Reactor based on Improved Hybrid model[J] . the Jourary of East China Univerist of Science and Technonlogy, 1999, 25(5): 506-513.
Google Scholar
[28]
Hua, XM and Jutan, A. Nonlinear inferential cascade control of exothermic fixed-bed reactors[J]. AIChE Journal, 2000, 46(5): 980-996.
DOI: 10.1002/aic.690460511
Google Scholar
[29]
In Sik Chin, Jin Won Chung and Kwang Soon Lee. Model Predictive Control of a Fixed-Bed Reactor with Nonlinear Quality Inference[J]. Korean J. Chem. Eng., 2002, 19(2): 213-220.
DOI: 10.1007/bf02698404
Google Scholar
[30]
Su Hongye and Chu Jian. A New Nonlinear Optimal Control Design Approach for a Chemical Reactor[J], 1995, 12(5): 539-545.
Google Scholar
[31]
Papavassiliou, V and Wagner, ML. Ballast gas for heat transfer control in fixed-bed reactors[J]. Chemical Engineering Science, 1999, 54(15-16): 3683-3689.
DOI: 10.1016/s0009-2509(98)00492-8
Google Scholar
[32]
M Chew-Hernandez, W.E. Jones and J.A. Wilson. On Control of Whole Temperature Profile in an Autothermal Tube-Cooled Fixed Bed Catalytic Reactor[C]. EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING–14: (2004).
DOI: 10.1016/s1570-7946(04)80169-x
Google Scholar
[33]
Aksikas Ilyasse et al. LQ control design of a class of hyperbolic PDE systems: Application to fixed-bed reactor[J]. AUTOMATICA, 2009, 45(6): 1542-1548.
DOI: 10.1016/j.automatica.2009.02.017
Google Scholar
[34]
Mandler, J.A., M. Morari and I.H. Seinfeld. Robust Multivariable Control System Design for a Fixed-Bed Reactor[J]. Ind. Eng. Chem. Fundam., 1986, 25: 645-655.
DOI: 10.1021/i100024a028
Google Scholar
[35]
A. Kremling and F. Allgöwer. Robust Control of a Catalytic Fixed Bed Reactor[C]. the 33rd Conference on Decision and Control: (1994).
DOI: 10.1109/cdc.1994.411293
Google Scholar
[36]
Chou Yi-Shyong and Wu Chen-Hui. Passivity-based control of the phthalic anhydride fixed-bed reactor[J]. Chemical Engineering Science, 2007, 62(5): 1282-1297.
DOI: 10.1016/j.ces.2006.11.013
Google Scholar
[37]
J. García et al. Interpolated Control of a Fixed-Bed Reactor with Cold-Shot Cooling[J]. Chem. Eng. Comm., 2009, 196: 1262-1277.
DOI: 10.1080/00986440902832316
Google Scholar
[38]
Mǎdǎlina Mircioiu et al. Robust Control and Optimization for a Petrochemical Pyrolysis Reactor[C]. 18th Mediterranean Conference on Control & Automation: (2010).
DOI: 10.1109/med.2010.5547645
Google Scholar
[39]
A. Arpornwichanop, et al. Model predictive control of an industrial pyrolysis gasoline hydrogenation reactor[J]. Journal of Industrial and Engineering Chemistry, 2008, 14: 175-181.
DOI: 10.1016/j.jiec.2007.09.009
Google Scholar
[40]
Hua, X et al. Nonlinear inferential control of an autonomous periodic fixed-bed reactor[J]. Journal of Process Control, 1998, 8(4): 239-250.
DOI: 10.1016/s0959-1524(97)00048-6
Google Scholar
[41]
Zhou, XG, Liu, LH and Yan, WK. Optimizing control of a wall-cooled fixed-bed reactor[J]. Chemical Engineering Science, 1999, 54(13-14): 2739-2744.
DOI: 10.1016/s0009-2509(98)00368-6
Google Scholar