Preparation and Characterization of Sepiolite Nanofibers by Microwave Chemical Methods

Article Preview

Abstract:

The sepiolite samples were defibered by using microwave chemical technique, and then different sepiolite samples were obtained with different treatment process. The effect of reaction time on the defibering for sepiolite fiber bundles was studied systematically. Through characterization by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), it was found that the defibered sepiolite samples had an average diameter of about 100 nm and length greater than 20μm. The defibering effect of sepiolite samples as prepared reached optimum at the reaction time of 13 min, and the structural stability of sepiolite was kept after defibering treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Giora, T. Dvora and S. Carina: Apply Clay Science, Vol. 20(2002), p.273.

Google Scholar

[2] S.B. Xie, S.M. Zhang and F.S. Wang, et al.: Composites Science and Technology, Vol. 67(2007), p.2334.

Google Scholar

[3] F. Catutla, M. Molina-sabio and F. Rodriguez-reinoso: Apply Clay Science, Vol. 15(1999), p.367.

Google Scholar

[4] A. Gokgoz and G. Tarcan: Applied Geochemistry, Vol. 21(2006), p.253.

Google Scholar

[5] A. Sun, J.B. Caillerie and J.J. Fripiat: Microporous Materials, Vol. 5(1995), p.135.

Google Scholar

[6] E. Eren and B. Afsin: Dyes and Pigments, Vol. 73(2007), p.162.

Google Scholar

[7] J.A. Delgado, M.A. Uguina and J.L. Sotelo, et al.: Journal of Natural Gas Chemistry, Vol. 16(2007), p.235.

Google Scholar

[8] G. Pan, H. Zou and H. Chen, et al.: Environmental Pollution, Vol. 141(2006), p.206.

Google Scholar

[9] H. Yin, J.S. Liang and Q.G. Tang, et al.: Journal of Synthetic Crystals, Vol. 34(2005), p.519.

Google Scholar

[10] K.P. Liu, P.F. Lu and H. Gong, et al.: Mining R& D, Vol. 24(2004), p.25.

Google Scholar

[11] F. Wang, J.S. Liang and Q.G. Tang, et al.: Journal of Nanoscience and Nanotechnology, Vol. 10(2010), p. (2017).

Google Scholar

[12] Y.G. Xi, T.J. Peng and H.F. Liu, et al.: Advanced Materials Research, Vol. 178(2011), p.220.

Google Scholar

[13] A. Obut and I. Girgin: Minerals Engineering, Vol. 15(2002), p.683.

Google Scholar

[14] H. Suquet, S. Chevalier and C. Marcilly, et al.: Clay Minerals, Vol. 26(1991), p.49.

Google Scholar

[15] E. Ucgul and I. Girgin: Turkish Journal of Chemistry, Vol. 26(2002), p.431.

Google Scholar

[16] A.K. Mamina, E.N. Kotelnikova and V.A. Muromtsev: Inorganic Materials, Vol. 26(1990), p.104.

Google Scholar

[17] S. Mani, L.G. Tabil and S. Sokhansanj: Biomass Bioenergy, Vol. 27(2004), p.339.

Google Scholar

[18] J.L. Post and S. Crawford: Applied Clay Science, Vol. 36(2007), p.232.

Google Scholar

[19] A.A. Goktas, Z. Misirli and T. Baykara: Ceramics International, Vol. 23(1997), p.305.

Google Scholar

[20] I. Dekany, L. Turi and A. Fonseca, et al.: Applied Clay Science, Vol. 14(1999), p.141.

Google Scholar

[21] Y. Turhan, P. Turan and M. Doan, et al.: Ind. Eng. Chem. Res., Vol. 47(2008), p.1883.

Google Scholar

[22] R.L. Frost, O.B. Locos and H. Ruan, et al.: Vib. Spectrosc., Vol. 27(2001), p.1.

Google Scholar

[23] S. Akyuz and T. Akyuz: Journal of Molecular Structure, Vol. 744-747(2005), p.47.

Google Scholar