Preparation of Sericite-TiO2 Composite Particle Material by Mechano-Chemical Method and its Application

Article Preview

Abstract:

Sericite-TiO2 composite particle material was prepared via mechano-chemical method. SEMEDS and XPS ananlysis indicates that the surface of the sericite were coated by the TiO2 layers and the Ti4+ cations were anchored by formation of SiOTi bonds. Otherwise, the TiO2-coated sericite powders have higher light scattering indexes and other more outstanding properties than the naked sericite powders. Especially, the whiteness, adsorbed value, and hiding power indexes of the rutile TiO2-coated sericite powders were higher than those of the anatase TiO2-coated sericite powders. Hence, rutile TiO2-coated sericite powders can be substitute for the titanium dioxide pigment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.M. Salih: Journal of Applied Microbiology 92 (2002) 920-926.

Google Scholar

[2] N. Veronovski and M. Sfiligoj-Smole: Fibers and Polymers 11 (2010) 545-550.

DOI: 10.1007/s12221-010-0545-5

Google Scholar

[3] R.M. Wang, B.Y. Wang and Y.F. He, et al.: Polymers for Advanced Technologies 21 (2010) 331-336.

Google Scholar

[4] D. Grosso, M. Faustini and L. Nicole, et al.: Chemistry of Materials 22 (2010) 4406-4413.

Google Scholar

[5] M. Montazer, R. Dastjerdi and S. Shahsavan: Colloids and Surfaces B-Biointerfaces 81 (2010) 32-41.

DOI: 10.1016/j.colsurfb.2010.06.023

Google Scholar

[6] A.F. Shojaie, H.F. Moafi and M.A. Zanjanchi: Chemical Engineering Journal 166 (2011) 413-419.

Google Scholar

[7] N.K. Allam, C.W. Yen and R.D. Near, et al.: Energy & Environmental Science 4 (2011) 2909-2914.

Google Scholar

[8] N.K. Allam, H.A. Hamedani and H. Garmestani, et al.: Journal of Physical Chemistry C 115 (2011) 13480-13486.

Google Scholar

[9] Y. Li, G.M. Wang and H.Y. Wang, et al.: Nano Letters 11 (2011) 3026-3033.

Google Scholar

[10] T. Maeda, H. Nakao and H. Kito, et al.: Dyes and Pigments 90 (2011) 275-283.

Google Scholar

[11] F.M.K. Tehrani, M. Rashidzadeh and A. Nemati, et al.: International Journal of Environmental Science and Technology 8 (2011) 545-552.

Google Scholar

[12] X.D. Wang and J.A. Shi: Crystal Growth & Design 11 (2011) 949-954.

Google Scholar

[13] G. Beobide, R. Prado and A. Marcaide, et al.: Solar Energy Materials and Solar Cells 94 (2010) 1081-1088.

DOI: 10.1016/j.solmat.2010.02.031

Google Scholar

[14] R. Sarraf-Mamoory, B.K. Kaleji and S. Sanjabi: Reaction Kinetics Mechanisms and Catalysis 103 (2011) 289-298.

DOI: 10.1007/s11144-011-0327-y

Google Scholar

[15] M. Ren, H.B. Yin and Z.Z. Lu, et al.: Powder Technology 204 (2010) 249-254.

Google Scholar

[16] M. Ren, H.B. Yin and Z.Z. Lu, et al.: Transactions of Nonferrous Metals Society of China 19 (2009) 626-634.

Google Scholar

[17] M. Ren, H.B. Yin and A.L. Wang, et al.: Applied Surface Science 254 (2008) 7314-7320.

Google Scholar

[18] M. Ren, H.B. Yin and A.L. Wang, et al.: Materials Chemistry and Physics 103 (2007) 230-234.

Google Scholar