Characterization of Photoelectric Properties of ZnO by I-V Measurement

Article Preview

Abstract:

Experiments with ZnO Metal-Oxide-Semiconductor (MOS) under different circumstances were made to get four different I-V curves. There were four conditions: dark, and tests with the green, blue, ultraviolet LED light. According to references, three parameters B,VB0 and Nbarr could be acquired by fitting lines of the I-V curves using MATLAB and LabVIEW. From their definitions, B, VB0 and Nbarr indicate photoelectric properties of ZnO cooperatively under concrete conditions. VB0, grain boundary potential, is parameter of extrinsic properties of ZnO determined by both ZnO and testing conditions. So VB0 is critical to control the photoelectric properties of ZnO. A smaller VB0, the stronger the photoelectric response of ZnO and the lager the efficiency of photoelectric conversion. Besides, this theory can be expanded to test the photoelectric properties of the other semiconductor materials. And I-V curves can direct the application of these materials efficiently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-158

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason and G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl Phys Lett 10 (2002) 1830-1832.

DOI: 10.1063/1.1504875

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 5523 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] C.C. Chang and Y.E. Chen, Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques, Ieee T Ultrason Ferr 3 (1997) 624-628.

DOI: 10.1109/58.658315

Google Scholar

[4] E. Bonnotte, C. Gorecki, H. Toshiyoshi, H. Kawakatsu, H. Fujita, K. Worhoff and K. Hashimoto, Guided-wave acoustooptic interaction with phase modulation in a ZnO thin-film transducer on an Si-based integrated Mach-Zehnder interferometer, J Lightwave Technol 1 (1999).

DOI: 10.1109/50.737419

Google Scholar

[5] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim and Y.Q. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications, Adv Mater 5 (2003) 353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[6] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo and S. Niki, ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications, Thin Solid Films (2003) 369-372.

DOI: 10.1016/s0040-6090(03)00243-8

Google Scholar

[7] K.J. Chen, F.Y. Hung, S.J. Chang and Z.S. Hu, Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method, Appl Surf Sci 12 (2009) 6308-6312.

DOI: 10.1016/j.apsusc.2009.02.007

Google Scholar

[8] D. Kohl, Function and applications of gas sensors, J Phys D Appl Phys 19 (2001) R125-R149.

DOI: 10.1088/0022-3727/34/19/201

Google Scholar

[9] N. Barsan, M. Schweizer-Berberich and W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY 4 (1999) 287-304.

DOI: 10.1007/s002160051490

Google Scholar

[10] N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, J Electroceram 3 (2001) 143-167.

Google Scholar

[11] N. Barsan and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J Phys-Condens Mat 20 (2003) R813-R839.

DOI: 10.1088/0953-8984/15/20/201

Google Scholar

[12] Z.J. Zou, Y. Liu, H.Y. Li, Y.C. Liao and C.S. Xie, Synthesis of TiO2/WO3/MnO2 Composites and High-Throughput Screening for Their Photoelectrical Properties, J Comb Chem 3 (2010) 363-369.

DOI: 10.1021/cc1000117

Google Scholar

[13] Y. Muraoka, N. Takubo and Z. Hiroi, Photoinduced conductivity in tin dioxide thin films, J Appl Phys 10370210 (2009).

Google Scholar

[14] A. Banerjee, A.K. Haldar, J. Mondal, A. Sen and H.S. Maiti, Bi-layer functionally gradient thick film semiconducting methane sensors, B Mater Sci 6 (2002) 497-499.

DOI: 10.1007/bf02710536

Google Scholar

[15] A. Varpula, S. Novikov, J. Sinkkonen and M. Utriainen, Bias dependent sensitivity in metal-oxide gas sensors, Sensor Actuat B-Chem 1Sp. Iss. SI (2008) 134-142.

DOI: 10.1016/j.snb.2007.12.013

Google Scholar

[16] J. Nelson, A.M. Eppler and I.M. Ballard, Photoconductivity and charge trapping in porous nanocrystalline titanium dioxide, J Photoch Photobio A 1-3Sp. Iss. SI (2002) 25-31.

DOI: 10.1016/s1010-6030(02)00035-7

Google Scholar

[17] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada and M. Hara, Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor, Nanotechnology 10 (2006) 2567-2573.

DOI: 10.1088/0957-4484/17/10/021

Google Scholar