[1]
P Shang, XW Li. Chaotic analysis of traffic time series. Chaos, Solitons and Fractals 25(2005) 121.
DOI: 10.1016/j.chaos.2004.09.104
Google Scholar
[2]
CK Peng, S Buldyrev, S Havlin, M Simons, HE Stanley, A Goldberger, Phys. Rev. E 49 (1994) 1685.
DOI: 10.1103/physreve.49.1685
Google Scholar
[3]
CK Peng, S Buldyrev, A Goldberger, R Mantegna, M. Simons, HE Stanley, Physica A 221(1995) 180.
Google Scholar
[4]
RG Kavasseri, R Nagarajan, A multifractal description of wind speed records, Chaos, Solitons and Fractals, 24(2005)165.
DOI: 10.1016/s0960-0779(04)00533-8
Google Scholar
[5]
V Morariu, A Isvoran., O Zainea, A non-linear approach to the structure–mobility relationship in protein main chains, Chaos, Solitons and Fractals, 32(2007)1305.
DOI: 10.1016/j.chaos.2005.12.023
Google Scholar
[6]
HE Stanley, S Buldyrev, A Goldberger, Scaling features of noncoding DNA, Physica A 273(1999)1.
Google Scholar
[7]
H Zhong, K Dong, Multifractal Analysis of Traffic Flow Time Series, Journal of Hebei University of Engineering, 26(2009)109.
Google Scholar
[8]
L Rogério, G. Vasconcelos, Long-range correlations and nonstationarity in the Brazilian stock market, Physica A, 329(2003)231.
DOI: 10.1016/s0378-4371(03)00607-1
Google Scholar
[9]
J. Feder, Fractals Plenum Press, New York, (1988).
Google Scholar
[10]
Falconer KJ. Fractal Geometry Mathematical Foundations and Applications. New York: John Wiley & Sons; (1990).
Google Scholar